Abstract:
Method, device, and computer program product that may improve communications between a mobile device and an access point device are disclosed. In one embodiment, a method of communicating between a mobile device and an access point device comprises control a plurality of beacons in the access point device, establishing a communication between the access point device with the mobile device using a first beacon in the plurality of beacons, broadcasting availability of the plurality of beacons in the access point device via the first beacon, and establishing the communication with the mobile device using a second beacon in the plurality of beacons.
Abstract:
Approaches for enhancing range-based position determination using pairwise error detection and compensation are provided. One method for enhancing a position estimate of a first node may include performing measurements at the first node using a signal received from a second node, and receiving measurements from the second node. The received measurements may be performed at the second node using a signal provided by the first node. The method may further include determining pairwise comparisons of the performed measurements and the received measurements, and compensating the measurements performed at the first node, based on the pairwise comparisons, for estimating the position of the first node. Systems and apparatuses for performing the various position determination methods are further presented.
Abstract:
A visual beacon, such as a Quick Response (QR) code or other type of artificial visual beacon is identified based on a coarse position and content information, and optionally, type of the visual beacon. For example, position may be based on latitude and longitude, e.g., from a satellite positioning system, or the CellID from a cellular network. The content information may be based on a sampling of the content before or after decoding. Content information may alternatively be all of the decoded content or an image of the visual beacon. Thus, for example, a mobile platform may generate a visual beacon identifier using the position and content information, which is transmitted to a navigation assistance server. The server can access and transmit to the mobile platform a navigation assistance message associated with the visual beacon identifier. If no visual beacon identifier is found, the server may enter the information.
Abstract:
Disclosed are systems, methods and devices for application of determining position information for mobile devices. In specific implementations, measurement of a signal travel time and a signal's strength may be combined to characterize a transmission power of the signal's transmitter. The characterized transmission power may be applied to affect expected signal strength signature values for use of the signal's transmitter may be updated in order to enhance a location based service where location may be effected by accuracy of a transmitter's power.
Abstract:
A method of locating a target device includes: producing, at a query device, a request for a location of a target device, the query device including a first radio, of a first type, configured to communicate wirelessly using a first communication protocol, the target lacking a radio of the first type but including a second radio, of a second type, configured to communicate wirelessly using a second communication protocol, the second communication protocol being incompatible with the first communication protocol; and transmitting the request wirelessly, from the query device to a first intermediate device, using the first radio.
Abstract:
Disclosed is an apparatus and method for managing assistance data by user equipment. The method may include obtaining positioning assistance data from a server. The method may also include generating, from the obtained positioning assistance data, at least one first subset of positioning assistance data based, at least in part, on positioning capabilities and/or positioning preferences associated with a first device. Furthermore, the method may include transmitting the first subset of positioning assistance data to the first device.
Abstract:
Disclosed is an apparatus and method for automatic communication mode selection. The method may include detecting a communication by a user equipment. The method may also include determining one or more characteristics associated with the communication, wherein the one or more characteristics comprise user environmental data, public environmental data, or a combination thereof associated with the communication. Furthermore, the method may include selecting a mode for the communication that is different from an original mode of the detected communication based on the one or more characteristics.
Abstract:
Method, device, computer program product, and apparatus to enable mobile device position optimization and reporting are described. Signals provided by a plurality of base transceiver stations (BTS) are received to determine a BTS-based position of the mobile device. A reference position of the mobile device is determined. A range measurement with respect to a target BTS is determined. In one aspect, one or more unreliable BTSs may be detected and reported based on a positioning measurement quality, a range measurement quality, or combinations thereof. In one aspect, the positioning measurement quality is determined based on a difference between the reference position of the mobile device and the BTS-based position of the mobile device. In one aspect, the range measurement quality is determined based on a difference between a measured range/distance and a reference/expected range/distance.
Abstract:
Methods and systems are presented for providing a combined barometric value. In some embodiments, the method includes obtaining, at the serving fixed local transceiver, barometric values of a plurality of client fixed local transceivers, and determining a combined barometric correction value. The method further includes initiating a barometric correction value of the serving fixed local transceiver to the combined barometric correction value, and sending an indication of the barometric correction value to the plurality of client fixed local transceivers. The method further includes receiving a request for the serving fixed local transceiver barometric correction value from a target client fixed local transceiver, and sending the barometric correction value from the serving fixed local transceiver to the target client fixed local transceiver.
Abstract:
Method, device, and computer program product that may improve communications between a mobile device and an access point device are disclosed. In one embodiment, an access point device includes a transceiver configured to receive signals from a mobile device, a processor coupled to the transceiver, and a memory coupled to the processor, the memory having stored thereon code configured to be executed by the processor, the code instructing the processor to: control a plurality of beacons in the access point device, obtain range measurements using the plurality of beacons in the access point device, and assist calibration of a beacon in the mobile device using the range measurements obtained by the plurality of beacons in the access point device.