Abstract:
Aspects of the present disclosure are directed to apparatuses and methods capable of selective acknowledgement of packets from an access probe. In one aspect, an apparatus includes: a transceiver configured to receive a set of frames associated with an access probe message from a wireless node, wherein the access probe message includes a plurality of frames, and the set of frames comprises a subset of the plurality of frames; and a processing system configured to generate a selective acknowledgement message based on a determination of whether each frame in the set of frames is received correctly. The acknowledgement includes an indication of receipt for at least one frame in the set of frames. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Apparatus and methods are disclosed for adapting the power of an access probe transmission, in accordance with a reverse link underload indicator provided by the base station. In one example, the base station can transmit a one-bit reverse link underload indicator as an information element broadcasted within a general page message (GPM). Here, the reverse link underload indicator can indicate whether a measured rise-over-thermal (RoT) at the base station is less than a given threshold. The access terminal may accordingly reduce the initial transmit power of an access probe transmission in the case of a reverse link underload condition, as this condition would indicate that the base station could accommodate reduced power access probe transmissions without substantially decreasing the probability of a quick detection of the access attempt. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure are directed to apparatuses and methods capable of selective acknowledgement of packets from an access probe. In one aspect, an apparatus includes: a transceiver configured to receive a set of frames associated with an access probe message from a wireless node, wherein the access probe message includes a plurality of frames, and the set of frames comprises a subset of the plurality of frames; and a processing system configured to generate a selective acknowledgement message based on a determination of whether each frame in the set of frames is received correctly. The acknowledgement includes an indication of receipt for at least one frame in the set of frames. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to identify one or more capabilities (e.g., characteristics, features). Such an access terminal can send a capability indication message to a network node. The capability indication message is adapted to identify at least one capability associated with the access terminal. The network node can receive the capability indication message and can identify one or more performance attributes associated with each identified capability of the access terminal, which performance attributes can be beneficially altered or optimized in light of the identified capabilities. The network node and the access terminal can then employ one or more adjusted performance attributes associated with each identified capability. Other aspects, embodiments, and features are also included.
Abstract:
Apparatus and methods are described herein for setting up a communication channel. A mobile station may send a message to a base station to setup a traffic channel. In response, the mobile station may receive a single message from the base station including channel assignment parameters and service option configurations. The mobile station may use the information from the single message to establish the traffic channel. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Access terminals are adapted to facilitate reception of overhead messages. According to one example, an access terminal can determine whether it is at least substantially stationary. The access terminal may receive one or more sequence numbers corresponding to a subsequent overhead message. In response to being at least substantially stationary, the access terminal can ignore the subsequent overhead message when the corresponding sequence numbers are the same as stored sequence numbers corresponding to a previously obtained overhead message, even when the previously obtained overhead message is more than six hundred seconds old. According to another example, a network node may transmit an overhead message including a corresponding sector indicator and sequence numbers. When the sector indicator and the sequence numbers are the same as a previously received and stored sector indicator and sequence numbers, the access terminal can ignore the overhead message. Other aspects, embodiments, and features are also included.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Methods, systems, and devices are described for decreasing user plane latency in a wireless communication system. This may include routing a portion of bearer traffic to or from a UE through a local or serving gateway, or within or between base stations, rather than via the core network. In some examples, techniques for selected internet protocol flow ultra-low latency (SIPFULL) for systems in which users may have subscribed to enhanced services may be employed. The network may, for instance, authorize SIPFULL functionalities for UEs per access point name (APN) based on individual services subscribed by the UE to improve overall quality of service (QoS). In some examples, a UEs latency requirements or SIPFULL authorizations may affect mobility operations.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
Aspects of the present disclosure are directed to apparatuses and methods capable of selective acknowledgement of packets from an access probe. In one aspect, an apparatus includes: a transceiver configured to receive a set of frames associated with an access probe message from a wireless node, wherein the access probe message includes a plurality of frames, and the set of frames comprises a subset of the plurality of frames; and a processing system configured to generate a selective acknowledgement message based on a determination of whether each frame in the set of frames is received correctly. The acknowledgement includes an indication of receipt for at least one frame in the set of frames. The transceiver can transmit the selective acknowledgement message with an identifier assigned to the wireless node to allow tracking of a response. Other aspects, embodiments, and features are also claimed and described.