Abstract:
In certain aspects, a method includes receiving a first intermediate frequency (IF) signal and a second IF signal via a common input, upconverting the first IF signal into a first radio frequency (RF) signal, transmitting the first RF signal via a first antenna array, upconverting the second IF signal into a second RF signal, and transmitting the second RF signal via a second antenna array. In a first transit mode, the first RF signal is in a first frequency band and the second RF signal is in a second frequency band, and, in a second transmit mode, the first RF signal and the second RF signal are both in the first frequency band.
Abstract:
Aspects of the present relate to reflection type phase shifters for radio frequency (RF) wireless devices. Reflection type phase structures in accordance with aspects described herein can improve device performance with compact configurations, such as where magnetic and capacitive coupling is integrated into a device design to integrate interactions between elements for improved phase shifting performance in a compact design with wideband performance.
Abstract:
An apparatus is disclosed for a hybrid wireless transceiver architecture that supports multiple antenna arrays. In an example aspect, the apparatus includes a first antenna array, a second antenna array, and a wireless transceiver. The wireless transceiver includes first dedicated circuitry dedicated to the first antenna array and second dedicated circuitry dedicated to the second antenna array. The wireless transceiver also includes shared circuitry that is shared with both the first antenna array and the second antenna array.
Abstract:
An apparatus is disclosed for transceiving signals in multiple modes. In example implementations, an apparatus includes a transceiver that includes a first amplifier; a mixer having at least one input node and at least one output node, with the at least one input node coupled to the first amplifier; and a second amplifier coupled to the at least one output node of the mixer. The transceiver also includes a first register coupled to the first amplifier and a second register coupled to the second amplifier. The transceiver further includes at least one memory realizing a lookup table. The at least one memory is coupled to the first register and the second register. The lookup table includes a first portion corresponding to a first mode of the transceiver and a second portion corresponding to a second mode of the transceiver.
Abstract:
A device includes a low-noise amplifier (LNA) and a matching circuit. The matching circuit is coupled to an output of the LNA and switchably coupled to at least one of a first and a second output of the device. The device may further include a power splitter switchably coupled between an output of the matching circuit and the first and/or the second output of the device.
Abstract:
A device includes a load circuit configured to receive an amplified communication signal, the load circuit having a center tapped inductor structure configured to divide the amplified communication signal into a first portion and a second portion, the load circuit configured to resonate at a harmonic of the amplified communication signal.
Abstract:
An apparatus includes an amplifier and a first inductor coupled to an input of the amplifier. The apparatus also includes a second inductor that is inductively coupled to the first inductor and that couples the amplifier to a first supply node. The apparatus further includes a third inductor that is inductively coupled to the first inductor and to the second inductor and that couples the amplifier to a second supply node.
Abstract:
A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.
Abstract:
A device includes a common gate buffer circuit configured to receive a communication signal, an interfering signal detector configured to provide a control signal indicative of the power level of an interfering signal present with the communication signal and a control circuit configured to control an amount of current flowing through the common gate buffer circuit based on the control signal.
Abstract:
Devices and methods for detection of active return loss for an antenna element of a plurality of antenna elements of a phased array antenna are provided. An exemplary device can convert a voltage differential at an input of a power amplifier (PA) to first current. The device can convert a coupled voltage corresponding to a signal transmitted from the PA to a respective antenna element, to a second current. The device can convert a reflected voltage corresponding to a signal reflected from the respective antenna element, to a third current. The device can convert the first current, the second current, and the third current to an output voltage at a generator output. The device can further have a controller that can adaptively generate codebooks for transmission based on the output voltage.