Abstract:
A client/receiver downloads data over a network path between a source and the receiver coupled by the network path and stores the media data in a presentation buffer of the receiver and from there it is consumed by a presentation element. The receiver monitors a presentation buffer fill level that represents what portion of the presentation buffer contains media data not yet consumed by a presentation element. The receiver makes requests for additional data to download. If the fill level is above a high fill threshold, the receiver does not make further requests and eventually the fill level goes down. If the fill level is below a low fill threshold, the receiver restarts the downloading and updates the fill level as media data is consumed by the presentation element. The fill level might be measured in units of memory storage capacity and/or units of presentation time.
Abstract:
Video data is retrieved from a server. During retrieval of the video data, a client device receives information indicating bit rates of representations of multimedia content. In addition, the client device receives information indicating priority values for segments of the representations. The segments correspond to particular temporal sections of the representations. The client device requests selected ones of the segments based on the priority values for the segments and an estimated throughput. In some instances, the client device requests the segments in accordance with an adaptive streaming network protocol, such as Dynamic Adaptive Streaming over HTTP (DASH).
Abstract:
A client device includes one or more processors configured to send a plurality of probe requests for segments of media data to a server device, wherein the server device provides the media data using a live streaming service, analyze responses to the plurality of probe requests to determine a left edge and a right edge of a segment availability window, and send a request for a segment within the segment availability window based on the determined left edge and the determined right edge of the segment availability window, in accordance with the live streaming service.
Abstract:
Embodiments enable HTTP servers to pass incomplete and/or corrupted files in response to file requests from clients. In the various embodiments, HTTP servers may be enabled to generate status codes identifying that an incomplete version of a file is being returned in response to a file request. In an embodiment, an HTTP server may be enabled to determine the ability of a client to handle incomplete versions of files.
Abstract:
Systems and methods which are adapted to provide selective transport accelerator operation are disclosed. In operation according to embodiments, one or more functions of transport accelerator operation is selectively bypassed or not based upon particular criteria. Transport accelerator control logic may obtain one or more acceleration selection attributes and, based on the one or more acceleration selection attributes, selectively invoke first functionality of transport accelerator logic of a client device to obtain the content from the content server or bypassing the first functionality of the transport accelerator logic of the client device to obtain the content from the content server. The first functionality may comprise subdividing the user agent's request for content into a plurality of chunk requests for requesting chunks of the content from the content server to provide accelerated delivery of the content to the client device.
Abstract:
According to some aspects, a transport accelerator of a client device may generate a chunk request that is derived from a fragment request and that has transport acceleration metadata. The transport acceleration metadata may indicate that the request is from a transport accelerator and/or indicate a fragment associated with the fragment request. The transport accelerator may receive a signal to cancel one or more chunk requests and/or wait to receive a full fragment. A client application of the client device may generate the signal upon receipt of an HTTP response from a server that complies with a handshaking procedure.
Abstract:
Transport accelerator (TA) systems and methods for accelerating delivery of content to a user agent (UA) of a client device are provided according to embodiments of the present disclosure. Embodiments comprise a TA architecture implementing a connection manager (CM) and a request manager (RM). A CM of embodiments requests chunks of content from a content server, receives data in response to requesting the chunks of content, wherein the received data is missing data from a requested chunk of content, and provides a receipt acknowledgement (ACK) for the missing data. The received data, which is missing data from a requested chunk of the chunks of content, may be passed through a communication protocol stack to an application for assembly into a one or more content objects.
Abstract:
Video data is retrieved from a server. During retrieval of the video data, a client device receives information indicating bit rates of representations of multimedia content. In addition, the client device receives information indicating priority values for segments of the representations. The segments correspond to particular temporal sections of the representations. The client device requests selected ones of the segments based on the priority values for the segments and an estimated throughput. In some instances, the client device requests the segments in accordance with an adaptive streaming network protocol, such as Dynamic Adaptive Streaming over HTTP (DASH).