Abstract:
A method and system for obtaining an available white space channel for wireless communication using a white space device (WSD) are described. The WSD scans signals of TV transmitters, determines the received signal strength (RSSI) for those signals, and records TV data, including TV designations and corresponding RSSIs, for signals that exceed a predetermined threshold. The WSD sends TV data for at least three TV transmitters to an enhanced TV white space database (EnTVDB). The EnTVDB uses the TV data and information in its database to determine the geo-coordinates of the WSD. The EnTVDB uses the geo-coordinates of the WSD to identify available white space. The EnTVDB sends at least one channel of available white space to the white space device for its wireless communication.
Abstract:
Systems, methods, and devices for wireless communication are provided. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a processor configured to generate a packet for transmission via a wireless signal. The packet is generated for transmission over a bandwidth of 1 MHz using at least one orthogonal frequency-division multiplexing (OFDM) symbol. The apparatus further includes a transmitter configured to transmit the packet via the wireless signal having unique power spectral density characteristics.
Abstract:
This disclosure provides methods, devices and systems for improving wireless communications in power spectral density (PSD)-limited frequency bands. A wireless communication device, having a number (NTX) of transmit antennas, parses a physical layer (PHY) protocol data unit (PPDU) into a number (NSS) of spatial streams and modulates the NSS spatial streams on a number (M) of subcarriers. In some implementations, the wireless communication device may transmit the PPDU using a number (N) of the transmit antennas, where NSS≤N
Abstract:
This disclosure provides methods, components, devices and systems for wireless communications. Some aspects more specifically relate to elevation estimation for determining operating channels and transmission parameters. A wireless communication device, such as a cloud service, may receive geolocation information of an access point (AP). Additionally, or alternatively, the wireless communication device may receive air pressure and temperature information of the AP. Using the geolocation information and building datasets including locations and heights of buildings surrounding the AP, the wireless communication device may identify a highest building and based on its, height estimate an elevation of the AP. Based on the estimated building height and elevation, the wireless communication device may determine a set of transmission parameters for the AP and transmit an indication of the set to the AP.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for physical layer (PHY) packet design for power spectral density (PSD) limits. In some implementations, a wireless communication device generates a plurality of PHY convergence protocol (PLCP) protocol data unit (PPDU) duplicates configured for transmission over a selected bandwidth, and transmits each PPDU duplicate of the plurality of PPDU duplicates on a corresponding frequency subband of a plurality of different frequency subbands. In some other implementations, the wireless communication device generates a PPDU for transmission over a set of duplicated resource units (RUs) allocated to the wireless communication device, and transmits the PPDU over the allocated set of duplicated RUs.
Abstract:
A method and apparatus are disclosed for a wireless communication device capable of scanning for radar signals while detecting and/or receiving a wireless communication signal. The wireless communication device may include a plurality of local oscillator synthesizers to allow distinct frequency bands to be used for wireless communication signals and radar detection. In some embodiments, the wireless communication device may include a radar detection physical layer (PHY) circuit to detect the presence of radar signals within a received RF signal. The radar detection PHY may have limited functionality suitable primarily for radar signal analysis and not suitable for processing (decoding) communication signals.
Abstract:
A system and method are disclosed that may allow a STA to selectively change frequency bands from an operating band to a candidate band based on operating conditions. In response to determining that a channel condition is within a band switch region associated with a candidate band, the STA may select the candidate band and temporarily switch to it. The STA may select an initial modulation and coding scheme for the candidate band and probe the candidate band with data to determine an estimate of candidate band goodput. If the estimate of candidate band goodput is greater than the operating band goodput, the STA may switch to the candidate band.
Abstract:
A system and method are disclosed that may allow a STA to selectively change frequency bands from an operating band to a candidate band based on operating conditions. In response to determining that a channel condition is within a band switch region associated with a candidate band, the STA may select the candidate band and temporarily switch to it. The STA may select an initial modulation and coding scheme for the candidate band and probe the candidate band with data to determine an estimate of candidate band goodput. If the estimate of candidate band goodput is greater than the operating band goodput, the STA may switch to the candidate band.
Abstract:
Systems and methods of performing communication via television high throughput (TVHT) bandwidth channels are disclosed. Values of one or more physical layer parameters for use in communication via TVHT parameters are also defined. A short inter-frame spacing (SIFS) time is 120 microseconds (μs) for a 6 megahertz (MHz) or a 7 MHz bandwidth channel, and is 90 μs for an 8 MHz bandwidth channel. The parameters also include a clear channel assessment (CCA) time of 15 μs for a 6 MHz or 7 MHz bandwidth channel and 11.25 μs for an 8 MHz bandwidth channel. Additional parameters, such as compliance with a spectral flatness constraint, transmit center frequency tolerance, symbol clock frequency tolerance, transmitter center frequency leakage, transmitter constellation error, and non-HT duplicate transmission are also defined (e.g., for inclusion into a standard, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11af).
Abstract:
Systems and methods of performing communication via television high throughput (TVHT) bandwidth channels are disclosed. Values of one or more physical layer parameters for use in communication via TVHT parameters are also defined. A short inter-frame spacing (SIFS) time is 120 microseconds (μs) for a 6 megahertz (MHz) or a 7 MHz bandwidth channel, and is 90 μs for an 8 MHz bandwidth channel. The parameters also include a clear channel assessment (CCA) time of 15 μs for a 6 MHz or 7 MHz bandwidth channel and 11.25 μs for an 8 MHz bandwidth channel. Additional parameters, such as compliance with a spectral flatness constraint, transmit center frequency tolerance, symbol clock frequency tolerance, transmitter center frequency leakage, transmitter constellation error, and non-HT duplicate transmission are also defined (e.g., for inclusion into a standard, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11af).