摘要:
A near-net or net shape fused silica glass article, such as a radome. The article is formed by depositing silica soot onto a mandrel having a shape that corresponds to the shape of the fused silica glass article. In some embodiments, the mandrel is inductively heated to a temperature that is sufficient to consolidate or sinter the silica soot upon deposition onto the mandrel to form fused silica glass. The fused silica glass article may have an outer layer that is under compression and/or multiple layers comprising various dopants that can alter or affect physical, mechanical, electrical, and/or optical properties.
摘要:
A glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves forming a first glass soot layer on a deposition surface of a soot-receiving device, removing the first glass soot layer from the deposition surface, and forming a second glass soot layer on the unsupported first glass soot layer. The resulting composite glass soot sheet is heated to form a sintered glass sheet. The glass sheet can be a substantially homogeneous glass sheet or a composite glass sheet having layer-specific attributes.
摘要:
An ultra-thin glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The sintering involves initially heating and sintering one or more central segments of a glass soot sheet, and progressively heating and sintering glass soot sheet segments that are located laterally or axially adjacent to previously-sintered segments such that, along respective width directions of the glass soot sheet, only a portion of the width is sintered at a given time interval during the heating.
摘要:
A high-silica glass sheet has an average thickness of less than 150 microns and an average surface roughness over one or both of its two major surfaces of less than 1 nm. The glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet may comprise a plurality of substantially parallel surface protrusions, which are visible only when a major surface of the glass sheet is viewed at an angle sufficiently removed from normal incidence.
摘要:
The strain-managed optical waveguide assemblies of the present invention utilize a large-mode-area (LMA) optical fiber that is annealed in a first bending such that the fiber in that configuration has substantially no axial strain. A fiber support member is then used to support the annealed LMA optical fiber in a second bending configuration that forms within the LMA optical fiber an axial strain profile that reduces stimulated Brillouin scattering (SBS) as compared to the first bending configuration, and that also preferably causes the LMA optical fiber to operate in a single mode. The LMA optical fiber may have a double-clad configuration and include a doped core that serves as a gain medium. The strain-managed optical waveguide assembly can then be used to constitute a fiber amplifier that mitigates the SBS penalty associated with high-power fiber-based optical systems. The strain-managed waveguide assembly can also provide for thermal management in high-power applications, and can be used to control SBS by controlling the temperature profile along the length of the LMA optical fiber in a manner that mitigates SBS.
摘要:
An apparatus and process for making glass soot sheet and sintered glass sheet. Glass soot particles are deposited on a curved deposition surface of a rotating drum to form a soot sheet. The soot sheet is then released from the deposition surface. The soot sheet can be sintered into a consolidated glass. The soot sheet and the sintered glass can be sufficiently long and flexible to be reeled into a roll.
摘要:
A high-surface quality glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves providing glass soot particles, depositing a first fraction of the glass soot particles on a deposition surface to form a supported soot layer, electrostatically attracting and collecting a second fraction of the glass soot particles onto a surface of a charged plate, removing the soot layer from the deposition surface to form a soot sheet, and heating at least a portion of the soot sheet to sinter the glass soot particles to form a glass sheet.
摘要:
Simultaneous thermal forming of a ferrule and optical fiber as part of a ferrule assembly to thermally form an optical surface in the ferrule assembly. Related fiber optic components, connectors, assemblies, and methods are disclosed. In certain embodiments, the ferrule assembly is comprised of a ferrule and an optical fiber having an end portion extending from an end face of the ferrule. The ferrule may be made from a material or material composition having the same or similar thermal energy absorption characteristics as the optical fiber disposed in the ferrule. Thus, when the end face of the ferrule and an end portion of an optical fiber are simultaneously exposed to a wavelength(s) of a laser beam emitted by a laser, at least a portion of the end face of the ferrule and end portion of the optical fiber are both thermally formed together to form an optical surface.
摘要:
A burner module comprising a burner gas inlet block, a lower flow plate, an upper flow plate, a burner gas flow disperser, and a burner gas discharge block. The burner gas inlet block, the burner gas flow disperser, and the burner gas discharge block each comprising a plurality of channels separated by partitions. The partitions of the burner gas flow disperser and the burner gas discharge block comprising a knife edge. The upper flow plate and the lower flow plate each comprising a plurality of pressure holes in fluid communication with the plurality of channels. Additionally, the method of forming a glass sheet or ribbon using the disclosed burner module and a glass sheet or ribbon formed using the method.
摘要:
A glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves forming a first glass soot layer on a deposition surface of a soot-receiving device, removing the first glass soot layer from the deposition surface, and forming a second glass soot layer on the unsupported first glass soot layer. The resulting composite glass soot sheet is heated to form a sintered glass sheet. The glass sheet can be a substantially homogeneous glass sheet or a composite glass sheet having layer-specific attributes.