Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
A method is disclosed for recovering germanium from a gaseous mixture which includes a germanium-containing compound in vapor or particulate form, acid in vapor form, and water vapor. The gaseous mixture is contacted with a liquid containing water under conditions effective to dissolve the germanium-containing compound in the liquid. The acidity of the resulting liquid mixture is increased under conditions effective to vaporize the germanium-containing compound. The vaporized germanium-containing compound is contacted with one or more aqueous solutions under conditions effective to dissolve and precipitate the germanium-containing compound in at least one of the one or more aqueous solutions, and the resulting precipitate is separated from the at least one of the one or more aqueous solutions. The methods described herein are particularly well suited for recovering germanium from the waste gases produced during optical waveguide manufacturing processes. Germanium recovered by this method can thereafter be used in the production of semiconductors, optical waveguide fibers and optical components.
Abstract:
Titania-containing silica glass bodies and extreme ultraviolet elements having low levels of striae are disclosed. Methods and apparatus for manufacturing and measuring striae in glass elements and extreme ultraviolet elements are also disclosed.
Abstract:
The invention provides a manufacturing method of an optical waveguide able to precisely manufacture the optical waveguide having a waveguide construction as designed, and improve yield as one example. In this manufacturing method, a hydrolysis reaction of raw material gas of glass is caused within an oxygen-hydrogen flame by flowing the raw material gas, oxygen gas and hydrogen gas from a burner, and an optical waveguide forming area is formed by depositing glass particulates on a substrate. The oxygen-hydrogen flame is injected toward the optical waveguide forming area in a slanting direction on the substrate. An exhaust pipe is arranged on the discharging side of an injecting flow. Surplus glass particulates unattached to the optical waveguide forming area are sucked and exhausted by the exhaust pipe. The surplus glass particulates are sucked and exhausted by the exhaust pipe by inclining a suction port side of the exhaust pipe by an angle within a range from 5null to 30null with respect to a face of the substrate.
Abstract:
A high-surface quality glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves providing glass soot particles, depositing a first fraction of the glass soot particles on a deposition surface to form a supported soot layer, electrostatically attracting and collecting a second fraction of the glass soot particles onto a surface of a charged plate, removing the soot layer from the deposition surface to form a soot sheet, and heating at least a portion of the soot sheet to sinter the glass soot particles to form a glass sheet.
Abstract:
Titania-containing silica glass bodies and extreme ultraviolet elements having low levels of striae are disclosed. Methods and apparatus for manufacturing and measuring striae in glass elements and extreme ultraviolet elements are also disclosed.
Abstract:
A method of treating gaseous waste from an optical fiber preform fabrication unit containing halogenated compounds includes a step of forming a liquid effluent from the gaseous waste by condensing the gaseous waste. The gaseous waste is preferably condensed by cooling it. Plant for implementing the method includes a condenser and a container for collecting condensate. The condenser is preferably a refrigerating device. The plant can further include a soot box.
Abstract:
A process for manufacturing synthetic quartz glass involves feeding a quartz glass-forming raw material to a high-temperature gas zone within a chamber, converting the quartz glass-forming raw material into quartz soot, and forming synthetic quartz glass from the soot. A suspended soot-discharging gas which has been flow-straightened in a suspended soot discharging direction flows through the chamber in the vicinity of the high-temperature gas zone. This process keeps free suspended soot from settling onto the surface of the quartz ingot where fusion and growth take place, thereby preventing the formation of bubbles within the quartz glass under growth.
Abstract:
A high-surface quality glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet formation involves providing glass soot particles, depositing a first fraction of the glass soot particles on a deposition surface to form a supported soot layer, electrostatically attracting and collecting a second fraction of the glass soot particles onto a surface of a charged plate, removing the soot layer from the deposition surface to form a soot sheet, and heating at least a portion of the soot sheet to sinter the glass soot particles to form a glass sheet.
Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.