摘要:
Techniques for supporting data transmission on the uplink in a wireless network are described. In an aspect, a user equipment (UE) may send a data transmission to a serving base station and may send uplink control information (UCI) to a non-serving base station. The UCI may include pertinent information to allow the non-serving base station to process the data transmission from the UE. In one design, the UCI may allow the non-serving base station to estimate the interference due to the data transmission from the UE and to cancel the interference at the non-serving base station. The interference cancellation may improve the received signal quality at the non-serving base station. After the interference cancellation, the non-serving base station may process a data transmission from another UE served by the base station.
摘要:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
摘要:
Providing for management of wireless communications in a heterogeneous wireless access point (AP) environment is described herein. By way of example, system data of an over-the-air message can be configured to include information identifying a distinct type of transmitting base station. In some aspects, the information can include an access type of the base station and/or a sector ID for distinguishing the base station among large numbers of other base stations. According to other aspects, the information can include wireless channel resources designated for a particular type of base station, or blanked by the transmitting base station, to facilitate interference reduction on such resources. By employing aspects of wireless communication management disclosed herein, efficient and reliable communication can be affected in large heterogeneous AP networks.
摘要:
Techniques for centralized control of relay operation are described. In an aspect, a designated network entity (e.g., a base station or a network controller) may control the operation of relay stations within its coverage area. The network entity may select certain user equipments (UEs) to be relay UEs that can serve as relay stations for other UEs, e.g., based on pathloss between the UEs and a base station, the locations of the UEs, battery power levels of the UEs, fairness considerations, etc. The network entity may also select a specific relay UE to serve as a relay station for a client UE desiring to communicate with a base station, e.g., based on pilot measurements from relay UEs for the client UE. The network entity may also control transmission of discovery pilots by relay UEs and/or client UEs for relay detection.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.
摘要:
Systems and methods are provided for adaptively transmitting information to a plurality of nodes in a local area of a base station. The base station receives channel quality information from one or more of the nodes within the local area, selects a transmission rate for a downlink transmission corresponding to the lowest channel qualities, and simultaneously transmits a message to the nodes at the selected transmission rate.
摘要:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
摘要:
Systems, apparatus, methods and computer program products for facilitating collision detection are provided. In some embodiments, a method can include: receiving identifying information during one or more time intervals from a plurality of base stations; determining whether at least two different values of the identifying information from the plurality of base stations have been transmitted during the same time interval; and determining that a collision has occurred between at least two of the plurality of base stations in response to determining that the at least two different values of the identifying information from the plurality of base stations have been transmitted during the same time interval.
摘要:
Techniques for allocating and mapping resources in a wireless communication system are described. The system may use hop-ports to facilitate allocation and use of subcarriers. In one aspect, the hop-ports may be partitioned into multiple subzones, with each subzone including a configurable number of hop-ports. The hop-ports within each subzone may be permuted or shuffled based on a permutation function. After permutation, the hop-ports in all subzones may be mapped to the subcarriers based on local or global hopping. In another aspect, a set of hop-ports may be mapped to a set of subcarriers. A hop-port may be mapped to an unavailable subcarrier and may then be remapped to another available subcarrier. In yet another aspect, a set of hop-ports may be mapped to a set of subcarriers distributed (e.g., evenly) across all subcarriers but avoiding subcarriers in a reserved zone.
摘要:
Techniques for establishing and maintaining peer-to-peer (P2P) communication are described. In an aspect, P2P communication on an unlicensed spectrum may be established and maintained with network assistance. In one design, a user equipment (UE) may communicate with a wide area network (WAN) to establish P2P communication with at least one other UE on a first frequency band that is not licensed to the WAN. For example, the UE may receive an assignment of at least one frequency channel in the first frequency band for P2P communication. The UE may then communicate peer-to-peer with the other UE(s) on the at least one frequency channel. The UE may also communicate with the WAN to maintain P2P communication with the other UE(s), e.g., to switch to another frequency channel if necessary.