摘要:
Embodiments of the invention generally relate to using remote sensing equipment such as a Light Detection and Ranging (LIDAR) device to detect wind characteristics for use by wind turbines of a wind park. A wind park controller may received raw wind data from the remote sensing device and determine one or more turbines that can use the raw wind data. The raw wind data may be converted to customized data for each of the one or more wind turbines. Upon being provided the customized wind data, the one or more wind turbines may adjust one or more operational characteristics to improve power production or avoid damage to turbine components.
摘要:
A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme event. On detection the system controller takes the necessary evasive action depending on the nature and severity of the extreme condition detected. This may include a significant reduction in power generated, complete shutdown of the generator and yawing of the nacelle and rotor to reduce loading on the rotor blades.
摘要:
The application describes a wind turbine having a control method and controller for performing predictive control of a wind turbine generator. Based on the measured instantaneous wind speed, it is known to provide control signals to a wind turbine in order to control the pitch of the wind turbine rotor blades and the speed of the generator. However, it is difficult using instantaneous wind speed measurements to achieve smooth control, due to finite response speeds of the associated electro-mechanical systems, as well as the constantly changing control system inputs. The predictive control system described in the application assumes a model of generator speed based on the values of the incident wind speed v(t) and the values of a control signal u(t) output to the wind turbine in a feed forward loop. Here, the control signal can be for one or more of controlling either the power setting of the generator, or the pitch angle of the rotor blades. The predictive controller uses a rolling time series of values for v(t) and u(t) and based on a predicted response of the generator speed w(t) optimizes the time series control signal u(t). The predicted response of the generator speed w(t) is based on model, that can be refined in real time as the wind turbine operates.
摘要:
Embodiments of the invention generally relate to using remote sensing equipment such as a Light Detection and Ranging (LIDAR) device to detect wind characteristics for use by wind turbines of a wind park. A wind park controller may received raw wind data from the remote sensing device and determine one or more turbines that can use the raw wind data. The raw wind data may be converted to customized data for each of the one or more wind turbines. Upon being provided the customized wind data, the one or more wind turbines may adjust one or more operational characteristics to improve power production or avoid damage to turbine components.
摘要:
A wind turbine has a scanning Lidar arranged on the nacelle. The Lidar has a single scanning beam which scans about a substantially vertical axis to sense wind related data in a measurement volume a predetermined distance from the Lidar. Fast Fourier transforms of data from a plurality of points in the measurement volume are analysed to derive a peak velocity and a measure of variance. A controller receives the peak velocity and measure of variance as inputs and generates an output if the controller determines that the input data shows that the wind conditions are such that damage to the wind turbine is likely.
摘要:
A wind turbine has a Lidar (20) device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme change in wind direction. The detection is performed by differentiating the rate of change of wind direction and filtering for a period of time. On detection of extreme change the system controller takes the necessary evasive action which may include shutting down the turbine, commencing an immediate yawing action, and de-rating the turbine until the yawing action is complete.
摘要:
A maintenance apparatus is provided for use with a wind turbine that has a tower, a hub supported by the tower, and a plurality of blades extending outwardly from the hub. The maintenance apparatus has a mounting element that is configured to be secured to the tower and to be selectively movable along the length thereof. A robotic arm is coupled to the mounting element, and a blade-engaging device is coupled to the robotic arm and is configured to engage one of the blades to effect a maintenance task thereon.
摘要:
Wind turbines of a wind power plant may be selectively over-rated by measuring the difference between the nominal and actual power plant outputs and deriving an over-rating request signal based on that difference which is sent to each turbine. The same value may be sent to each turbine. Alternatively, each turbine may be given its own over-rating amount based on an optimisation of the turbine. Over-rating may also be used when external economic factors such as energy costs are sufficiently high to out-weigh any potential harmful effect of over-rating. The fatigue lifetime of turbines and their critical components may also be taken into account when deciding whether and to what extent to implement an over-rating command.
摘要:
The application describes a wind turbine having a control method and controller for performing predictive control of a wind turbine generator. Based on the measured instantaneous wind speed, it is known to provide control signals to a wind turbine in order to control the pitch of the wind turbine rotor blades and the speed of the generator. However, it is difficult using instantaneous wind speed measurements to achieve smooth control, due to finite response speeds of the associated electro-mechanical systems, as well as the constantly changing control system inputs. The predictive control system described in the application assumes a model of generator speed based on the values of the incident wind speed v(t) and the values of a control signal u(t) output to the wind turbine in a feed forward loop. Here, the control signal can be for one or more of controlling either the power setting of the generator, or the pitch angle of the rotor blades. The predictive controller uses a rolling time series of values for v(t) and u(t) and based on a predicted response of the generator speed w(t) optimises the time series control signal u(t). The predicted response of the generator speed w(t) is based on model, that can be refined in real time as the wind turbine operates.
摘要:
Method, system, and computer program product for collecting sensor readings from a component of a wind turbine. The system includes a data collection system coupled in communication with a sensor. The data collection unit includes a processor configured to direct the sensor readings from the sensor to a buffer for temporary storage and to identify a triggering event by comparing the sensor readings received from the sensor with a reference value. In response to the identification of the triggering event, the sensor readings are transferred from the buffer to the mass storage device and stored in a non-volatile form by the mass storage device.