摘要:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
摘要:
A system for simultaneously inspecting the frontsides and backsides of semiconductor wafers for defects is disclosed. The system rotates the semiconductor wafer while the frontside and backside surfaces are generally simultaneously optically scanned for defects. Rotation is induced by providing contact between the beveled edges of the semiconductor wafer and roller bearings rotationally driven by a motor. The wafer is supported in a tilted or semi-upright orientation such that support is provided by gravity. This tilted supporting orientation permits both the frontside and the backside of the wafer to be viewed simultaneously by a frontside inspection device and a backside inspection device.
摘要:
A periodic structure is illuminated by polychromatic electromagnetic radiation. Radiation from the structure is collected and divided into two rays having different polarization states. The two rays are detected from which one or more parameters of the periodic structure may be derived. In another embodiment, when the periodic structure is illuminated by a poly chromatic electromagnetic radiation, the collected radiation from the structure is passed through a polarization element having a polarization plane. The element and the polychromatic beam are controlled so that the polarization plane of the element are at two or more different orientations with respect to the plane of incidence of the polychromatic beam. Radiation that has passed through the element is detected when the plane of polarization is at the two or more positions so that one or more parameters of the periodic structure may be derived from the detected signals. At least one of the orientations of the plane of polarization is substantially stationary when the detection takes place. To have as small a footprint as possible, one employs an optical device that includes a first element directing a polychromatic beam of electromagnetic radiation to the structure and a second optical element collecting radiation from the structure where the two elements form an integral unit or are attached together to form an integrated unit. To reduce the footprint, the measurement instrument and the wafer are both moved. In one embodiment, both the apparatus and the wafer undergo translational motion transverse to each other. In a different arrangement, one of the two motions is translational and the other is rotational. Any one of the above-described embodiments may be included in an integrated processing and detection apparatus which also includes a processing system processing the sample, where the processing system is responsive to the output of any one of the above embodiments for adjusting a processing parameter.
摘要:
An improved optical inspection apparatus, especially suited for inspecting semiconductor devices using a single camera. A highly polished mirrored stage is provided with a light source extending upwardly therethrough and providing a pedestal upon which the object to be inspected is centered. A plurality of stationary reflectors are disposed around the stage and function in concert with two separate movable reflectors to provide optical scanning over the appropriate surface portions of the device. A separate movable reflector system is used to maintain a constant focal path length between the device and the camera as the other movable reflectors scan the device, thus ensuring proper focus and measurement accuracy.