摘要:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
摘要:
A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.
摘要:
A test system for testing multiple-input and multiple-output (MIMO) systems is provided. The test system may convey signals bidirectionally between two test chambers. Each test chamber may be lined with foam to minimize electromagnetic reflections. Each test chamber may include structure three-dimensional array of test antennas. The test antennas may be mounted in a sphere using an antenna mounting structure. The antenna mounting structure may include multiple rings of different sizes. Test antennas may be embedded in the inner walls of the antenna mounting structure. There may be multiple receiving antennas located in each test chamber. One test chamber may include a device under test inside an array of test antennas and another test chamber may include base station antennas inside another array of test antennas. Signals may be conveyed between the test chambers using channel emulators.
摘要:
An electronic device may have a cavity antenna. The cavity antenna may have a logo-shaped dielectric window. An antenna resonating element for the cavity antenna may be formed from conductive traces on a printed circuit board. An antenna resonating element may be formed from the traces. The antenna resonating element may be mounted on an antenna support structure. A conductive cavity structure for the cavity antenna may have a planar lip that is mounted flush with an interior surface of a conductive housing wall. The cavity structure may have more than one depth. Shallower planar portions of the cavity structure may lie in a plane. The antenna resonating element may be located between the plane of the shallow cavity walls and an external surface of the conductive housing wall.
摘要:
A test system for testing an antenna tuning element is provided. The test system may include a tester, a test fixture, and a probing structure. The probing structure may include probe tips configured to mate with corresponding solder bumps formed on a device under test (DUT) containing an antenna tuning element. The DUT may be tested in a shunt or series configuration. The tester may be electrically coupled to the test probe via first and second connectors on the test fixture. An adjustable load circuit that is coupled to the second connector may be configured in a selected state so that a desired amount of electrical stress may be presented to the DUT during testing. The tester may be used to obtain measurement results on the DUT. Systematic effects associated with the test structures may be de-embedded from the measured results to obtain calibrated results.
摘要:
An antenna resonating element may be mounted in an antenna cavity. The antenna resonating element may have a printed circuit board substrate with a patterned metal layer. Components may be soldered to the antenna resonating element using solder with a given melting point before soldering the antenna resonating element the antenna cavity using solder with a lower melting point. Solder widow openings may be formed in the antenna resonating element and antenna cavity to allow for application of solder paste. Engagement features and alignment structures may be used to align the antenna resonating element relative to the antenna cavity. The antenna cavity may have a curved opening. The printed circuit board substrate may be bent to the shape of the curved opening before soldering components to the printed circuit board. An elastomeric fixture may be used to hold the antenna resonating element to the cavity during soldering.
摘要:
An electronic device may have a housing in which an antenna and a proximity sensor formed from flex circuit structures are mounted. The flex circuit structures may include first and second flex circuit layers. The first and second flex circuit layers may include metal antenna structures and metal proximity sensor electrode structures. Solder may be used to attach electrical components to the flex circuit layers and may be used to electrically connect metal structures on the first and second flex circuit layers to each other. The first and second flex circuit layers may be laminated together using a compressive fixture. The compressive fixture may have a first fixture with a convex surface and a second fixture with a concave surface so that the laminated flex circuit layers are provided with a bend.
摘要:
An electronic device may be provided with antenna structures. The antenna structures may include a plate antenna. The electronic device may have a conductive housing such as a metal housing with an opening. A dielectric antenna window may be formed within the opening. A dielectric support structure such as a flexible printed circuit may overlap the opening. A conductive trace on the dielectric support structure may form an antenna resonating element plate for the plate antenna. The plate may have a periphery that is separated from adjacent portions of the metal housing by a gap. The antenna resonating element plate may have a rectangular shape with a bend that lies along an edge of the conductive housing. The dielectric antenna window may have a bend that also lies along the edge of the conductive housing.
摘要:
A wireless electronic device may contain an antenna tuning element for tuning the device's operating frequency range. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, etc. A test system may be used to measure the radio-frequency characteristics associated with the tuning element assembled with an electronic device. The test system may include a test host, a test chamber, a signal generator, power meters, and radio-frequency testers. The electronic device under test (DUT) may be placed in the test chamber. The signal generator may generate radio-frequency test signals for energizing the antenna tuning element. The power meters and radio-frequency testers may be used to measure conducted and radiated signals emitted from the DUT while the DUT is placed in different desired orientations. A phantom object is optionally placed in the vicinity of the DUT to simulate actual user scenario.
摘要:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna may have an antenna ground that is configured to form a cavity for the antenna. The antenna ground may be formed on a support structure. The antenna ground may have an opening. The support structure may have a planar surface on which the opening is formed. A folded monopole antenna resonating element and an L-shaped conductive antenna element may be formed in the opening and may be capacitively coupled. The folded monopole antenna resonating element may have an end at which a positive antenna feed terminal is formed. A ground antenna feed terminal may be formed on the antenna ground. A segment of the antenna ground may extend between the ground antenna feed terminal and an end of the L-shaped conductive antenna element.