Abstract:
Disclosed herein is a fibrous separation membrane for secondary batteries, comprising: a support layer containing cellulose fiber; and a first heat-resistant resin layer applied on one side of the support layer.
Abstract:
Disclosed herein is a method for manufacturing an inductor, including: forming a coil laminate by inserting spiral coils into a guide shaft disposed at a center of a magnetic substrate; providing a molding part so as to surround the coil laminate; removing the guide shaft; and providing a ferrite composite so as to surround the molding part.
Abstract:
An inductor includes a body including an internal coil having first and second end portions and an encapsulant encapsulating the internal coil and containing magnetic particles. First and second external electrodes are on external surfaces of the body and electrically connected to the internal coil. A first metal expansion portion encloses the first end portion while coming into direct contact with the first end portion of the internal coil, and may be between the body and the first external electrode. A second metal expansion portion encloses the second end portion while coming into direct contact with the second end portion of the internal coil, and may be between the body and the second external electrode.
Abstract:
A common mode filter is manufactured to include a coil part including an insulation layer and a conductor pattern formed in the insulation layer; and a magnetic substrate coupled to one surface or both surfaces of the coil part. The magnetic substrate includes: an electrostatic absorbing layer made of an electrostatic absorbing material; a magnetic layer provided on one surface or both surfaces of the electrostatic absorbing layer and made of a magnetic material; and an electrode provided between the magnetic layer and the electrostatic absorbing layer and made of a conductive material. Therefore, common mode filter may maintain high efficiency characteristics while preventing an electrostatic discharge phenomenon.
Abstract:
The present invention discloses a filter for removing noise, which includes: a lower magnetic body; an insulating layer disposed on the lower magnetic body and including at least one conductor pattern; input and output stud terminals electrically connected to the conductor pattern for electrical input and output of the conductor pattern; and an upper magnetic body consisting of an inner upper magnetic body including ferrite powder with a size corresponding to the interval between the input and output stud terminals and an outer upper magnetic body including ferrite powder with a size corresponding to the interval between the input and output stud terminals and an outer surface of the lower magnetic body.According to the present invention, it is possible to implement a coil part with high performance and characteristics by increasing permeability and improving impedance characteristics through simple structure and process.
Abstract:
The present invention relates to an electronic component having a primary coil pattern and a secondary coil pattern with at least one selected from a dielectric and an insulator interposed therebetween, which includes at least one discharge terminal for discharging overvoltage or overcurrent applied to the primary coil pattern or the secondary coil pattern, and a method for manufacturing the same. Since it is possible to efficiently discharge overvoltage or overcurrent applied to an electronic component, it is possible to improve reliability of various electronic devices to which the electronic component in accordance with an embodiment of the present invention is applied as well as to extend lifespan of the electronic component itself.
Abstract:
Disclosed herein are a common mode filter and a method of manufacturing the same. The common mode filter includes: a primary coil that includes a primary coil body forming a plane in a vortex structure; and a secondary coil that includes a secondary coil body forming a co-plane in the same vortex structure as the primary coil body and forms a 180° rotational symmetry with the primary coil body, having the same length, width, and turn number as the primary coil body. Further, the method of manufacturing a common mode filter is proposed.
Abstract:
Disclosed herein is a substrate including: a base substrate; an insulating layer formed on an upper portion of the base substrate; a circuit layer formed in a form in which it is buried in the insulating layer; at least one electrode formed on upper portions of the circuit layer and the insulating layer and having a prominence and depression formed at a side thereof; and a dielectric layer formed in a form in which it surrounds the side of the electrode.
Abstract:
The present invention discloses a coil part including: a first coil body including a first magnetic substrate, a first coil pattern provided on the first magnetic substrate, and a first insulating layer covering the first coil pattern; a second coil body including a second magnetic substrate corresponding to the first magnetic substrate, a second coil pattern provided on the second magnetic substrate to correspond to the first coil pattern, and a second insulating layer covering the second coil pattern; and a ferrite composite interposed between the first insulating layer and the second insulating layer to couple the first coil body and the second coil body and having a spacer ball inside.According to the present invention, it is possible to prevent process defects generated during a manufacturing process of an existing coil part using a ferrite substrate, improve process efficiency and productivity, and reduce manufacturing costs.
Abstract:
A tantalum capacitor includes a tantalum body comprising a tantalum sintered body containing tantalum powder, a conductive polymer layer disposed on the tantalum sintered body and including a first filler as a non-conductive particle, and a tantalum wire. The first filler includes a core including at least one metal oxide among BaTiO3, Al2O3, SiO2 and ZrO2, and a coating film disposed on a surface of the core.