Abstract:
Disclosed are a communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The present disclosure can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. The present disclosure relates to a method of processing an anchor UPF for local offloading when a UE moves in a 5G cellular wireless communication system.
Abstract:
Embodiments relate to a communication method and system for converging a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. Embodiments may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure further relates to a method by a session management function (SMF) in a network including a session that is established via a first user plane function (UPF). The method includes determining whether to change the first UPF to a second UPF, and transmitting, to a terminal via an access and mobility function (AMF), a first message including a maintain time of the session established via the first UPF, when the first UPF needs to be changed.
Abstract:
Disclosed are a communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The present disclosure can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. The present disclosure relates to a method of processing an anchor UPF for local offloading when a UE moves in a 5G cellular wireless communication system.
Abstract:
A cooperative caching method and apparatus for reducing data access time and data acquisition cost in a mobile communication system are provided. The cooperative caching method of a local base station in a mobile communication system using caches of base stations cooperatively connected with each other includes determining, when a request for data is received from a client, whether the data is stored in the cache of the local base station; sending, to a home base station, upon determining that the data is not stored in the cache, a request for the data; acquiring the data from one of the home base station and a server according to whether the data is stored in the home base station; and serving the data to the client.
Abstract:
The present invention defines signaling required for separating a network entity (NE) responsible for mobility management (MM) and session management (SM), which are main function of a control plane (CP) in a next generation (NextGen) mobile communication system, and presents a basic procedure for providing mobile communication services including the signaling. Therefore, complexity of core equipment responsible for the CP is reduced in order to implement a network slice function and provide various levels of mobility, and an effect of minimizing a signaling load therebetween can be obtain. In addition, it is possible to efficiently manage the resources of a base station (radio access network (RAN)) and a user plane network entity (UP NF).
Abstract:
A method and apparatus for discovering and selecting a network that provides connectivity for transmitting user subscription data is provided. A user equipment (UE) in a wireless communication system includes a transceiver and at least one processor configured to identify preconfigured first information comprising a first list, the first list comprising at least one identifier (ID) of at least one network group providing an initial access to a non-public network (NPN), receive, from at least one base station via the transceiver, second information comprising at least one second list, the at least one second list comprising at least one ID of at least one network group which is supported by the at least one base station and provides an initial access to the NPN, and select a network to be initially accessed from a network group corresponding to at least one ID included in the first list and the at least one second list, based on the first information and the second information.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as long term evolution (LTE). According to various embodiments of the disclosure, an operating method of a user plane function (UPF) in a wireless communication system and an apparatus therefor are provided. The operating method includes receiving a first parameter for clock synchronization from a base station, and performing the clock synchronization with a neighboring network system using the received first parameter and a second parameter. The first parameter may include information relating to a link delay time between the neighboring network system and a network system comprising the UPF, and a residence time of a terminal, a base station and the UPF of the network system comprising the UPF, and the second parameter may include information relating to a backhaul delay time between the base station and the UPF.
Abstract:
The present disclosure relates to a communication technique which combines a 5G communication system, for supporting a higher data transmission rate than 4G systems, with IoT technology, and a system for same. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retailers, security and safety-related services, or the like) on the basis of 5G communication technology and IoT-related technology. Disclosed is a method for providing subscription information about non-public networks to a terminal in a wireless communication system.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed are an apparatus and a method for providing time synchronization between wiredly or wirelessly connected terminals by expanding a function for supporting a Time Sensitive Network (TSN) in a 5G System (5GS) of 3rd. Generation Partnership Project (3GPP).