Abstract:
Methods and apparatuses for remotely installing Universal Integrated Circuit Card (UICC) information about various Mobile Network Operators (MNOs) are provided. One of the apparatuses being a terminal including an electronic card, a transceiver configured to transmit and receive a signal, and a controller configured to receive at least one profile from a profile management server, wherein each profile of the received at least one profile is to be installed in an electronic card of at least one device, to obtain at least one electronic card identifier of the at least one device, and to transmit, to the at least one device, the at least one profile corresponding to the obtained at least one electronic card identifier.
Abstract:
A method for a cooperative communication according to a portion of the present specification, may include receiving at least one of information related to a radio access point and information related to a user equipment (UE) receiving a service from the radio access point, from the radio access point. The receiving may be performed by using a User Datagram Protocol (UDP) and a General Packet Radio Service (GPRS) Tunneling Protocol (GTP).
Abstract:
A method for transmitting/receiving, by a User Equipment, a signal in a mobile communication system includes: transmitting an authentication request message to a wireless LAN; receiving an authentication response message corresponding to the authentication request message from the wireless LAN; and transmitting, to a base station, a message for supporting a multi-connection mode based on the authentication response message. It is possible to generate an access connection or to provide a QoS setting when simultaneously accessing a 3GPP system and a non-3GPP system and transmitting/receiving data, so that a more improved method and device for transmitting and receiving data can be provided to a user.
Abstract:
A method for selecting an access network in a terminal of a mobile communication system according to one embodiment of the present specification comprises the steps of: if traffic is generated in the terminal, selecting an access network according to the characteristics of the generated traffic and network selection policy information; and transmitting and receiving the generated traffic via the selected access network. According to the embodiment, the present invention adjusts priorities of accesses given to users and applications in a wireless communication system including heterogenerous networks, thereby reducing processes for reselecting an access network of a user terminal, and reducing the cases of unnecessarily accessing a network having a low priority or requiring high costs for a long time. Therefore, the present invention can enhance user convenience and improve communication efficiency.
Abstract:
A method for selecting an access network in a terminal of a mobile communication system according to one embodiment of the present specification comprises the steps of: if traffic is generated in the terminal, selecting an access network according to the characteristics of the generated traffic and network selection policy information; and transmitting and receiving the generated traffic via the selected access network. According to the embodiment, the present invention adjusts priorities of accesses given to users and applications in a wireless communication system including heterogenerous networks, thereby reducing processes for reselecting an access network of a user terminal, and reducing the cases of unnecessarily accessing a network having a low priority or requiring high costs for a long time. Therefore, the present invention can enhance user convenience and improve communication efficiency.
Abstract:
A method for transmitting/receiving, by a User Equipment, a signal in a mobile communication system includes: transmitting an authentication request message to a wireless LAN; receiving an authentication response message corresponding to the authentication request message from the wireless LAN; and transmitting, to a base station, a message for supporting a multi-connection mode based on the authentication response message. It is possible to generate an access connection or to provide a QoS setting when simultaneously accessing a 3GPP system and a non-3GPP system and transmitting/receiving data, so that a more improved method and device for transmitting and receiving data can be provided to a user.
Abstract:
An electronic device provides low latency communication for an extended reality service. Based on a first value of quality of service (QoS) requested by an extended reality (XR) application stored in the electronic device, a first communication connection corresponding to the first value for receiving data regarding an XR service from an XR server is established. Based on a change of a value of the QoS from the first value to a second value, the first communication connection is maintained, and a second communication connection corresponding to the second value is established. Data regarding the XR service from the XR server is received via the second communication connection. The second communication connection can be a radio access technology (RAT) different from the first communication connection and/or a bearer different from the first communication connection.
Abstract:
Provided are a communication method and system enabling convergence of 5G communication and IoT technology to achieve higher data rates for beyond 4G communication systems. In addition, provided is a method for transmitting a power headroom report (PHR) by a user equipment (UE) in a mobile communication system. The method includes: receiving a first PHR configuration information for a first base station (first ENB); receiving a second PHR configuration information for a second ENB; generating, when the UE has dual connectivity to the first ENB and the second ENB, a dual connectivity PHR containing PHR information for the first ENB and second ENB based on a dual connectivity PHR format; and sending the dual connectivity PHR. There is also provided a user equipment supporting the above method. There is further provided a base station and operation method therefor that enable the user equipment to have dual connectivity.
Abstract:
The present disclosure relates to a communication technique for converging, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, and security and safety related services, on the basis of 5G communications technologies and IoT-related technologies. More specifically, a method for operating relay user equipment (UE) in a mobile communication system of the present invention comprises the steps of: transmitting, to a mobility management entity (MME) connected to relay UE, a remote UE report message comprising remote UE information on remote UE accessing a network via the relay UE; and receiving, from the MME, a response message corresponding to the remote UE report message.
Abstract:
Disclosed are a method and an apparatus for selecting a domain for a voice call in a mobile communication network. A terminal, which uses VoLTE, receives, from a network, identification information indicating whether IMS Voice over PS (IMS VoPS) is supported, determines whether the network supports IMS VoPS and determines a domain (PS or CS) to which a voice service will be provided through the network according to the determination result.