Abstract:
A high-quality light emitting device is provided which has a long-lasting light emitting element free from the problems of conventional ones because of a structure that allows less degradation, and a method of manufacturing the light emitting device is provided. After a bank is formed, an exposed anode surface is wiped using a PVA (polyvinyl alcohol)-based porous substance or the like to level the surface and remove dusts from the surface. An insulating film is formed between an interlayer insulating film on a TFT and the anode. Alternatively, plasma treatment is performed on the surface of the interlayer insulating film on the TFT for surface modification.
Abstract:
A substrate and a delamination film are separated by a physical means, or a mechanical means in a state where a metal film formed over a substrate, and a delamination layer comprising an oxide film including the metal and a film comprising silicon, which is formed over the metal film, are provided. Specifically, a TFT obtained by forming an oxide layer including the metal over a metal film; crystallizing the oxide layer by heat treatment; and performing delamination in a layer of the oxide layer or at both of the interface of the oxide layer is formed.
Abstract:
To realize a high-performance liquid crystal display device or light-emitting element using a plastic film. A CPU is formed over a first glass substrate and then, separated from the first substrate. A pixel portion having a light-emitting element is formed over a second glass substrate, and then, separated from the second substrate. The both are bonded to each other. Therefore, high integration can be achieved. Further, in this case, the separated layer including the CPU serves also as a sealing layer of the light-emitting element.
Abstract:
An objective is to increase the reliability of a light emitting device structured by combining TFTs and organic light emitting elements. A TFT (1201) and an organic light emitting element (1202) are formed on the same substrate (1203) as structuring elements of a light emitting device (1200). A first insulating film (1205) which functions as a blocking layer is formed on the substrate (1203) side of the TFT (1201), and a second insulating film (1206) is formed on the opposite upper layer side as a protective film. In addition, a third insulating film (1207) which functions as a barrier film is formed on the lower layer side of the organic light emitting element (1202). The third insulating film (1207) is formed by an inorganic insulating film such as a silicon nitride film, a silicon oxynitride film, an aluminum nitride film, an aluminum oxide film, or an aluminum oxynitride film. A fourth insulating film (1208) and a partitioning layer (1209) formed on the upper layer side of the organic light emitting element (1202) are formed using similar inorganic insulating films.
Abstract:
To provide a semiconductor device in which a layer to be peeled is attached to a base having a curved surface, and a method of manufacturing the same, and more particularly, a display having a curved surface, and more specifically a light-emitting device having a light emitting element attached to a base with a curved surface. A layer to be peeled, which contains a light emitting element furnished to a substrate using a laminate of a first material layer which is a metallic layer or nitride layer, and a second material layer which is an oxide layer, is transferred onto a film, and then the film and the layer to be peeled are curved, to thereby produce a display having a curved surface.
Abstract:
The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.
Abstract:
The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
Abstract:
A light emitting device which is capable of suppressing deterioration by diffusion of impurities such as moisture, oxygen, alkaline metal and alkaline earth metal, and concretely, a flexible light emitting device which has light emitting element formed on a plastic substrate. On the plastic substrate, disposed are two layers and more of barrier films comprising a layer represented by AlNxOy which is capable of blocking intrusion of moisture and oxygen in a light emitting layer and blocking intrusion of impurities such as an alkaline metal and an alkaline earth metal in an active layer of TFT, and further, a stress relaxation film containing resin is disposed between two layers of barrier films.
Abstract:
A substrate and a delamination film are separated by a physical means, or a mechanical means in a state where a metal film formed over a substrate, and a delamination layer comprising an oxide film including the metal and a film comprising silicon, which is formed over the metal film, are provided. Specifically, a TFT obtained by forming an oxide layer including the metal over a metal film; crystallizing the oxide layer by heat treatment; and performing delamination in a layer of the oxide layer or at both of the interface of the oxide layer is formed.
Abstract:
The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.