Abstract:
This invention relates to a particulate extraction material for the extraction of lithium from a geothermal brine or lithium containing solution. The particulate material includes an inorganic or polymer based substrate that includes a lithium aluminum intercalate layer applied to the exterior of the substrate, wherein the lithium aluminum intercalate layer is operable to capture lithium ions from solution.
Abstract:
This invention relates to a method for selective removal of silica and silicon containing compounds from solutions that include silica and silicon containing compounds, including geothermal brines.
Abstract:
This invention relates to treated geothermal brine compositions containing reduced concentrations of iron, silica, and zinc compared to the untreated brines. Exemplary compositions contain concentration of zinc ranges from 0 to 300 mg/kg, concentration of silica ranges from 0 to 30 mg/kg, concentration of iron ranges from 0 to 300 mg/kg. Exemplary compositions also contain reduced concentrations of elements like lithium, manganese, arsenic, barium, and lead. Exemplary compositions include Salton Sea brines containing a concentration of zinc less than 10 mg/kg, a concentration of silica ranging from less than 10 mg/kg, and a concentration of iron less than 10 mg/kg.
Abstract:
This invention relates to a method for the selective recovery of manganese and zinc from geothermal brines that includes the steps of removing silica and iron from the brine, oxidizing the manganese and zinc to form precipitates thereof, recovering the manganese and zinc precipitates, solubilizing the manganese and zinc precipitates, purifying the manganese and zinc, and forming a manganese precipitate, and recovering the zinc by electrochemical means.
Abstract:
This invention relates to a method for the preparation of lithium carbonate from lithium chloride containing brines. The method can include a silica removal step, capturing lithium chloride, recovering lithium chloride, supplying lithium chloride to an electrochemical cell and producing lithium hydroxide, contacting the lithium hydroxide with carbon dioxide to produce lithium carbonate.
Abstract:
This invention relates to a method for preparing a lithium activated alumina intercalate solid by contacting a three-dimensional activated alumina with a lithium salt under conditions sufficient to infuse lithium salts into activated alumina for the selective extraction and recovery of lithium from lithium containing solutions, including brines.
Abstract:
This invention relates to a method for selective removal of silica and silicon containing compounds from solutions that include silica and silicon containing compounds, including geothermal brines.
Abstract:
This invention relates to a method for producing geothermal power using geothermal brines while producing a reduced silica and iron brine having improved injectivity. The resulting compositions include a composition with reduced silica, iron, and lithium having reduced quantity of total suspended solids.
Abstract:
This invention relates to a method for preparing a lithium aluminate intercalate (LAI) matrix solid and methods for the selective extraction and recovery of lithium from lithium containing solutions, including brines. The method for preparing the LAI matrix solid includes reacting aluminum hydroxide and a lithium salt for form the lithium aluminate intercalate, which can then be mixed with up to about 25% by weight of a polymer to form the LAI matrix.
Abstract:
This invention relates to a method for the preparation of lithium carbonate from lithium chloride containing brines. The method can include a silica removal step, capturing lithium chloride, recovering lithium chloride, supplying lithium chloride to an electrochemical cell and producing lithium hydroxide, contacting the lithium hydroxide with carbon dioxide to produce lithium carbonate.