Abstract:
An image processing apparatus includes an intermediate image generating unit configured to input an image which has been shot with differing exposure times set by region, generates a plurality of exposure pattern images corresponding to differing exposure times based on the input image, and generates a plurality of timing images which are difference images of the plurality of exposure pattern images; and a distortion correction processing unit configured to generate a corrected image equivalent to an exposure processing image at a predetermined exposure time by synthesizing processing of the plurality of timing images.
Abstract:
There is provided an image processing apparatus including an HDR (High Dynamic Range) processing unit inputting images picked up while exposure control that changes an exposure time is being carried out with a predetermined spatial period and a predetermined temporal period on pixels that compose an image sensor, and carrying out image processing. The HDR processing unit generates a first combined image by combining pixel values of a plurality of images with different sensitivities generated by an interpolation process using a plurality of consecutively picked-up images, generates a second combined image by combining pixel values of a plurality of images with different sensitivities generated by an interpolation process that uses a single picked-up image, and generates an HDR image by executing a pixel value blending process on the first combined image and the second combined image in accordance with a blending ratio calculated in accordance with movement detection information.
Abstract:
There are provided an apparatus and a method which generate an RGB image having less color noise and fewer false colors by inputting an RGBW image. The apparatus has an image sensor having an RGBW array, and an image processing unit which performs image processing by inputting a sensor image formed of an RGBW pixel signal output from the image sensor. The image sensor has a periodic array of a unit composition formed of each RGBW pixel, and has an array in which composition ratios of each RGB pixel within the unit composition are adapted to be the same as each other. The image processing unit converts a pixel array of the sensor image formed of the RGBW pixel signal, and performs at least either array conversion processing for generating an RGB array image or signal processing for generating each RGB image signal in which all RGB pixel values are set for each pixel position of the sensor image.
Abstract:
An image processing apparatus includes an intermediate image generating unit configured to input an image which has been shot with differing exposure times set by region, generates a plurality of exposure pattern images corresponding to differing exposure times based on the input image, and generates a plurality of timing images which are difference images of the plurality of exposure pattern images; and a distortion correction processing unit configured to generate a corrected image equivalent to an exposure processing image at a predetermined exposure time by synthesizing processing of the plurality of timing images.
Abstract:
The present technology relates to image data processing devices, image data processing methods, and programs. A frame data generation unit generates first frame data based on event data indicating a variation in an electrical signal of a pixel generating the electrical signal by performing photoelectric conversion during a first accumulation time from a first frame generation start time to a first frame generation end time, and second frame data based on event data occurring during a second accumulation time from a second frame generation start time to a second frame generation end time. A first frame period from the first frame generation start time to the second frame generation start time is set and supplied to the frame data generation unit. The present technology can be applied to, for example, a case where a frame data is generated from an event data output from a dynamic vision sensor (DVS).
Abstract:
Provided is an information processing apparatus that is worn on a user's body for use. The information processing apparatus includes a sensor, a communication section, a control section, a power supply section, a housing section, a sticking section, and a sticking sensor. The control section controls the sensor and the communication section. The housing section accommodates the sensor, the communication section, the control section, and the power supply section. The sticking section fastens the housing section to the user. The sticking sensor detects a state of sticking between the user and the housing on the sticking section. The control section wirelessly sends a given signal to external equipment via the communication section in response to detection, by the sticking sensor, of the fact that the sticking section has peeled off from the user or is just about to peel off from the user.
Abstract:
An image processing device and a method that enable removal of reflection component light from images captured from various directions are provided. The image processing device includes: an image input unit that acquires at least three types of images formed with polarization images of different polarizing directions or non-polarization images; an angle input unit that outputs reflection angles that are the angles between the image capturing directions of the acquired images and the plane direction corresponding to the normal direction of the reflecting surface, to an intensity transmittance and intensity reflectance calculation unit; a calculation unit that calculates the respective intensity transmittances and the respective intensity reflectances of S waves and P waves, using the reflection angles; and a reflection component separation unit that removes the reflected light component from the images acquired by the image input unit, using the respective intensity transmittances and the respective intensity reflectances of the S waves and P waves. These processes enable removal of reflected light components from captured images having various reflection angles.
Abstract:
An image pickup unit 20 has a configuration in which non-polarizing pixels and polarizing pixels are disposed, the polarizing pixels being provided per angle in at least two polarization directions. A demosaicing unit 50 generates a non-polarized image, and a polarization component image per polarization direction, from a captured image generated by the image pickup unit 20. A polarization information generating unit 60 generates polarization information indicating the polarization characteristics of a subject included in the captured image, from the non-polarized image and the polarization component image generated by the demosaicing unit 50. As described above, the polarization information is generated with not only the polarization component image but also the highly-sensitive non-polarized image not having a decrease in the amount of light. Therefore, accurate polarization information can be acquired compared to a case where polarization information is generated on the basis of the polarization component image.
Abstract:
[Object] The present technique relates to an image pickup device, an image pickup method, and a program that enables pixels having 4 types of spectral sensitivities to be controlled while changing exposure times.[Solving Means] The present technique is applicable to an image pickup device including pixels having 4 types of spectral sensitivities, that include pixels having a panchromatic spectral sensitivity and are arranged on an image pickup surface, pixels that realize a first exposure and pixels that realize a second exposure different from the first exposure being arranged on the image pickup surface with respect to the 4 types of spectral sensitivities. Further, a first line in which first pixels having the panchromatic spectral sensitivity are arranged in a two-pixel cycle in a specific direction and a second line in which the first pixels are arranged while deviating by one pixel from the first line in the specific direction are arranged alternately in a direction orthogonal to the specific direction, and pixels having spectral sensitivities different from the spectral sensitivity of the first pixels are arranged in a 2- or 4-pixel cycle in the specific direction for each of the spectral sensitivities and 2-dimensionally constitute a cyclic arrangement of 4×4 pixels in which the first spectral sensitivity pixels are arranged in a checkerboard arrangement.
Abstract:
Long and short exposure time pixel information are input to pixel information. A long exposure time image set with the pixel values assuming all of the pixels have been exposed for a long time and a short exposure time image set with the pixel values assuming all of the pixels have been exposed for a short time are generated. A point spread function corresponding to the long exposure time image is computed as a long exposure time image PSF. A corrected image is generated using the short exposure time image, the long exposure time image, and the long exposure time image PSF. The corrected image is generated as a wide dynamic range image utilizing the pixel information for the long and short exposure time image. Utilizing the pixel information for the short exposure time image with little blurring, makes the corrected image a high quality corrected image with little blurring.