Abstract:
A self-controlled device maintains a frame of reference about an x-, y- and z-axis. The self-controlled device processes an input to control the self-propelled device, the input being based on the x- and y-axis. The self-propelled device is controlled in its movement, including about each of the x-, y- and z-axis, based on the input.
Abstract:
A self-propelled device includes a spherical housing and an internal drive system. The self-propelled device can further include an internal structure having a magnet holder that holds a first set of magnets and an external accessory comprising a second set of magnets to magnetically interact, through the spherical housing, with the first set magnets
Abstract:
A self-propelled device is disclosed that includes a center of mass drive system. The self-propelled device includes a substantially cylindrical body and wheels, with each wheel having a diameter substantially equivalent to the body. The self-propelled device may further include an internal drive system with a center of mass below a rotational axis of the wheels. Operation and maneuvering of the self-propelled device may be performed via active displacement of the center of mass.
Abstract:
A self-propelled device is provided including a drive system, a spherical housing, and a biasing mechanism. The drive system includes one or more motors that are contained within the spherical housing. The biasing mechanism actively forces the drive system to continuously engage an interior of the spherical housing in order to cause the spherical housing to move.
Abstract:
A self-propelled device can include at least a wireless interface, a housing, a propulsion mechanism, and a camera. Using the camera, the self-propelled device can generate a video feed and transmit the video feed to a controller device via the wireless interface. The self-propelled device can receive an input from the controller device indicating an object or location in the video feed. In response to the input, the self-propelled device can initiate an autonomous mode to autonomously operate the propulsion mechanism to propel the self-propelled device towards the object or location indicated in the video feed.
Abstract:
A computing device operating as a controller can obtain image data from a camera component. The computing device can determine a location of the self-propelled device relative to the camera based on the image data. A virtual content may be generated on the computing device based at least in part on the location of the self-propelled device.
Abstract:
A system comprising a self-propelled device and an accessory device. The self-propelled device includes a spherical housing, and a drive system provided within the spherical housing to cause the self-propelled device to roll. When the self-propelled device rolls, the self-propelled device and the accessory device magnetically interact to maintain the accessory device in contact with a top position of the spherical housing relative to an underlying surface on which the spherical housing is rolling on.
Abstract:
A self-propelled device can determine an initial reference frame of the self-propelled device in three-dimensional space, receive control inputs from a controller device, where the control inputs can be inputted by a user on a steering mechanism of the controller device. The self-propelled device can interpret the control inputs as control commands to maneuver the self-propelled device, and implement the control commands on an internal drive system of the self-propelled device to maneuver the self-propelled device based on the control inputs. While maneuvering, the self-propelled device can determine an orientation of the internal drive system within a spherical housing of the self-propelled device in relation to the initial reference frame, and transmit feedback to the controller device based on the orientation of the internal drive system in order to calibrate an orientation of the steering mechanism with the orientation of the internal drive system.
Abstract:
A self-propelled device can include a spherical housing, an internal drive system, and an inertial measurement unit. The self-propelled device can determine an initial frame of reference for the self-propelled device in a three-dimensional coordinate system. The self-propelled device can further receive control inputs from a controller device, translate the control inputs into commands to maneuver the self-propelled device, and implement the commands on the internal drive system to cause the spherical housing to rotate about each axis of the three-dimensional coordinate system. Utilizing the IMU, the self-propelled device can maintain an awareness of an orientation of the spherical housing relative to the initial frame of reference as the spherical housing rotates about each axis of the three-dimensional coordinate system.
Abstract:
A self-propelled device determines an orientation for its movement based on a pre-determined reference frame. A controller device is operable by a user to control the self-propelled device. The controller device includes a user interface for controlling at least a direction of movement of the self-propelled device. The self-propelled device is configured to signal the controller device information that indicates the orientation of the self-propelled device. The controller device is configured to orient the user interface, based on the information signaled from the self-propelled device, to reflect the orientation of the self-propelled device.