Abstract:
A circuit receives an input signal having a first level and a second level. A logic circuit includes a finite state machine circuit, an edge detector circuit, and a timer circuit. The finite state machine circuit is configured to set a mode of operation of the circuit. The edge detector circuit is configured to detect a transition between the first and second level. The timer circuit is configured to determine whether the first or second level is maintained over an interval, which starts from a transition detected by the edge detector circuit. The finite state machine circuit is configured to change the mode of operation based on the timer circuit determining that the first or second level has been maintained over the interval.
Abstract:
A gate driver circuit for a half bridge or full bridge output driver stage having a high side branch connected to one or more high side transistors and a low side branch connected to one or more low side transistors. A high side gate driver and a low side gate driver receive input signals at a low voltage level and output signals at a high voltage level as gate driving signals for the high side transistors and low side transistors. Each of the high side and the low side branches of the gate driver includes a set-reset latch having a signal output that is fed as a gate signal to the corresponding transistor of the half bridge or full bridge driver. A differential capacitive level shifter circuit receives the input signals at a low voltage level and outputs high voltage signals to drive the set and reset inputs of the set-reset latch.
Abstract:
An energy-harvesting system includes a transducer to convert environmental energy into a harvesting electrical signal. A storage element stores electrical energy derived from conversion of the harvested environmental energy. A harvesting interface supplies an electrical charging signal to the storage element. The harvesting interface is selectively connected to the storage element in response to a control signal. The control signal causes the connection when the harvesting electrical signal exceeds a threshold. Conversely, the control signal causes the disconnection when the harvesting electrical signal is less than the threshold.