Abstract:
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns.
Abstract:
The present disclosure provides a display device with a display panel, an input sensing unit, and a protective member. The input sensing unit is disposed on the display panel. The protective member includes an insulating material and is disposed on the input sensing unit. The protective member includes a first protective portion and a second protective portion disposed on the first protective portion, where a first modulus of the first protective portion is greater than a second modulus of the second protective portion. The second protective portion with the lower modulus absorbs external impacts, and the first protective portion with the higher modulus disperses the absorbed impact and prevents the display panel from being deformed by an external force. Therefore, the impact resistance of the display device is improved.
Abstract:
A display device may include a first transistor, a first electrode, a second electrode, a first intermediate layer, and a first changeable layer. The first electrode is electrically connected to the first transistor. The second electrode overlaps the first electrode. The first intermediate layer is positioned between the first electrode and the second electrode and may emit first light when the first electrode and the second electrode generate a first electric field. The first changeable layer, which overlaps the first electrode, may have a first transmittance value when the first electrode and the second electrode generate the first electric field, and may have a second transmittance value when the first electrode and the second electrode do not generate the first electric field. The second transmittance value is unequal to the first transmittance value.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes a substrate, a roof layer facing the substrate and shaped so as to at least partially define a plurality of microcavities, a liquid crystal layer disposed in the plurality of microcavities, and a partition wall which partitions adjacent ones of the microcavities and which includes at least two regions having different heights from each other.
Abstract:
A display device includes: a display substrate including a display area including a plurality of pixel areas and a non-display area at edge sides of the display area; and an aligning agent-accommodating structure including a capping layer disposed in the non-display area to be opened inward of the display substrate. The aligning agent-accommodating structure accommodates an aligning agent applied to the display area.
Abstract:
A display device including a substrate, and pixels disposed on the substrate, each of the pixels including a first sub-pixel and a second sub-pixel, in which the first sub-pixel includes a first cover layer defining a first cavity on the substrate, a first liquid crystal layer disposed in the first cavity, and a first pixel electrode and a first common electrode configured to apply an electric field to the first liquid crystal layer, the second sub-pixel includes a second cover layer defining a second cavity on the substrate, a second liquid crystal layer disposed in the second cavity, and a second pixel electrode and a second common electrode configured to apply an electric field to the second liquid crystal layer, and a first distance between the first pixel electrode and the first common electrode is different from a second distance between the second pixel electrode and the second common electrode.
Abstract:
A display device including a substrate, and pixels disposed on the substrate, each of the pixels including a first sub-pixel and a second sub-pixel, in which the first sub-pixel includes a first cover layer defining a first cavity on the substrate, a first liquid crystal layer disposed in the first cavity, and a first pixel electrode and a first common electrode configured to apply an electric field to the first liquid crystal layer, the second sub-pixel includes a second cover layer defining a second cavity on the substrate, a second liquid crystal layer disposed in the second cavity, and a second pixel electrode and a second common electrode configured to apply an electric field to the second liquid crystal layer, and a first distance between the first pixel electrode and the first common electrode is different from a second distance between the second pixel electrode and the second common electrode.
Abstract:
A display device and a method of manufacturing the display device are provided. Moisture may be prevented from penetrating into the display device. The display device includes a substrate including a pixel area. A thin film transistor is formed on the substrate. A pixel electrode is connected to the thin film transistor and formed in the pixel area. A roof layer is formed on the pixel electrode. The roof layer is separated from the pixel electrode via a microcavity. A liquid crystal layer fills the microcavity. A liquid crystal injection hole is formed in the roof layer and exposes a portion of the microcavity. An encapsulation layer is formed on the roof layer. The encapsulation layer covers the liquid crystal injection hole and seals the microcavity for the pixel area. The encapsulation layer includes a multilayer structure.
Abstract:
A display panel includes a substrate, a gate line, a color filter and a roof layer. The substrate includes a thin film transistor disposed thereon. The gate line extends along a first direction on the substrate and is connected to the thin film transistor. The color filter is disposed on the substrate. The roof layer is disposed on the color filter and is configured to define a tunnel-shaped cavity between the roof layer and the color filter. The tunnel-shaped cavity extends along a second direction crossing the first direction. A cross-sectional thickness of an area of the roof layer adjacent to the gate lines is smaller than a cross-sectional thickness of another area of the roof layer spaced apart from the gate lines.