Abstract:
There is provided a method for preparing a β-SiAlON phosphor capable of be controlled to show characteristics such as high brightness and desired particle size distribution. The method for preparing a β-SiAlON phosphor represented by Formula: Si(6-x)AlxOyN(8-y):Lnz (wherein, Ln is a rare earth element, and the following requirements are satisfied: 0
Abstract translation:提供了一种制备能够被控制以显示诸如高亮度和期望的粒度分布等特性的β-SiAlON荧光体的方法。 制备由式:Si(6-x)Al x O y N(8-y)表示的β-SiAlON荧光体的方法:Lnz(其中,Ln是稀土元素,满足以下要求:0
Abstract:
A white light emitting device may include a blue light emitting diode configured to emit blue light and a plurality of wavelength conversion materials configured to convert the blue light into light having different wavelengths based on being excited by the blue light, and emit white light based on the converting, wherein the emitted white light is associated with an Illuminating Engineering Society (IES) TM-30-15 Fidelity Index (Rf) in a range of 78 to 89, an IES TM-30-15 Chroma Change by Hue Index Rcs15 in a range of 7% to 16%, and an IES TM-30-15 Chroma Change by Hue Index Rcs16 in a range of 7% to 16%, and a color difference between a reflection spectrum of a white specimen of the emitted white light, and International Commission on Illumination (CIE) Standard illuminant D65, that is equal to or less than 106.
Abstract:
There are provided a phosphor and a light emitting device. The phosphor includes a phosphor composition including a rare-earth element employed in a compound represented by the equation: L3Si6N11, wherein L is one or more elements selected from La, Y, Gd and Lu, the rare-earth element is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm and Yb. The phosphor composition is provided in particle form. The particle has at least a portion of a plane perpendicular to a [001] direction to be flat thereon so as to have a crystal plane.
Abstract:
A method of manufacturing a white light emitting device includes dividing a phosphor sheet into phosphor film units to be applied to individual light emitting diode (LED) devices, measuring light conversion characteristics of the respective phosphor film units, classifying the phosphor film units of the phosphor sheet into a plurality of groups according to measurement results of the light conversion characteristics and combining the phosphor film units classified into the plurality of groups and an LED device having predetermined light characteristics so as to obtain target color characteristics.
Abstract:
A phosphor is represented by a general Formula: EuxMyL3−x−ySi6−zAlzN11−(z+y+z)O(z+y+z) and satisfies 0.00001≦x≦2.9999, 0.0001≦y≦2.99999 and 0≦z≦6.0. L is at least one element selected from La, Y, Gd and Lu. M is at least one element selected from Ca, Sr, Ba and Mn.
Abstract translation:荧光体由通式:EuxMyL3-x-ySi6-zAlzN11-(z + y + z)O(z + y + z)表示,满足0.00001≦̸ x≦̸ 2.9999,0.0001≦̸ y≦̸ 2.99999和0& z≦̸ 6.0。 L是选自La,Y,Gd和Lu中的至少一种元素。 M是选自Ca,Sr,Ba和Mn中的至少一种元素。
Abstract:
A method of manufacturing a semiconductor light emitting device, includes forming a conductive film on a surface of a semiconductor light emitting element. Phosphor particles are charged by mixing phosphor particles with an electrolyte having a metallic salt dissolved therein. The semiconductor light emitting element having the conductive film formed thereon is immersed in the electrolyte having the charged phosphor particles. A phosphor layer on the conductive film is formed by electrophoresing the phosphor particles. The conductive film is removed using wet etching.
Abstract:
There is provided a method for preparing a β-SiAlON phosphor capable of be controlled to show characteristics such as high brightness and desired particle size distribution. The method for preparing a β-SiAlON phosphor represented by Formula: Si(6-x)AlxOyN(8-y):Lnz (wherein, Ln is a rare earth element, and the following requirements are satisfied: 0
Abstract translation:提供了一种制备能够被控制以显示诸如高亮度和期望的粒度分布等特性的“SiAlON”荧光体的方法。 制备由式:Si(6-x)Al x O y N(8-y):Lnz(其中,Ln是稀土元素)并满足以下要求的由式(Si-x)Al x O y N(8-y)表示的-SiAlON荧光体的方法:0