Abstract:
Methods and apparatus for transmitting power setting information in a downlink Physical Downlink Shared Channel (PDSCH) in a communication system. In this communication system, a plurality of methods for calculating traffic-to-pilot ratios (T2P) are established. In addition, a mapping scheme between a plurality of overhead signals and a plurality of reference signal (RS) overhead ratios, ηRS, and the plurality of T2P calculation methods is established. A user-specific T2P ratio PB,k/PRS for certain OFDM symbols, a RS overhead ratio ηRS and a calculation method selected from the plurality of T2P calculation methods are assigned to a wireless terminal. Then, an overhead signal corresponding to both of the assigned RS overhead ratio ηRS and the assigned T2P calculation method is selected in accordance with the mapping scheme and is transmitted to the wireless terminal. In addition, the user-specific traffic-to-pilot ratio PB,k/PRS is transmitted to the wireless terminal. The wireless terminal may calculate the traffic-to-pilot ratios across different transmission antennas and different OFDM symbols in dependence upon the received traffic-to-pilot ratio PB,k/PRS, and the RS overhead ratio and the T2P calculation method indicated by the RS overhead signal.
Abstract:
Methods and apparatuses manage beam selection. A method for a mobile station (MS) includes identifying beamforming constraints of the MS. The method also includes performing measurement on a channel between a base station (BS) and the MS on at least one transmit (TX) beam and at least one receive (RX) beam. Additionally, the method includes sending beamforming feedback information based on the identified constraints of the MS and the channel measurement. A method for a base station (BS) includes receiving beamforming feedback information comprising at least one of radio frequency beamforming constraints of a mobile station or channel measurement information on a channel between the BS and the MS. Additionally, the method includes sending, to the MS, control information comprising an indication of at least one of MS RX beams or BS TX beams to be used in downlink communication with the MS based on the received beamforming feedback information.
Abstract:
A base station and mobile station are configured to perform control beam association. A method at the base station includes transmitting at least one first control beam including reference signals on which the mobile station can perform a measurement. The method also includes receiving a first measurement report from the mobile station of the at least one first control beam. The method further includes, based on the first measurement report, selecting at least one of the at least one first control beam for at least one control channel for the mobile station to associate with. The method still further includes transmitting control information in the at least one control channel to the mobile station using the at least one selected control beam, the control information comprising at least one resource allocation indication for the mobile station. The at least one selected control beam is associated to the mobile station.
Abstract:
A base station is capable of communicating with a plurality of subscriber stations using a beamforming scheme that varies beams over different time instances. The base station includes a plurality of antenna arrays configured to transmit N spatial beams and carry a reference symbols corresponding to specific spatial beams. The base station also includes NRF number of radio frequency (RF) processing chains coupled to respective ones of the plurality of antenna arrays, wherein N>>NRF. The subscriber station includes MRF processing receive paths configured to receive M number of beams from the base station.
Abstract:
An interleaving method in a mobile communication system is provided. The interleaving method includes encoding a plurality of bits to output encoded bits in a sequence, interleaving the encoded bits based on a modulation order to generate interleaved encoded bits comprising consecutive bits having a size based on the modulation order, the consecutive bits corresponding to consecutive bits of the encoded bits, scrambling the interleaved encoded bits with a scrambling code to generate scrambled bits, and modulating the scrambled bits based on the modulation order to output at least one symbol.
Abstract:
Reliable detection of the configuration of transmit antennas includes obtaining a data for transmission, encoding the data, and modulating the data. During the modulating of the data, the data may be configured in such a way as to convey the configuration of the antennas through the modulation of the data. An antenna configuration is obtained by obtaining a representation of the antenna configuration, and masking the data with an error correcting code, where the mask corresponds to the antenna configuration.
Abstract:
A transmission resource in a time domain subframe is divided into a plurality of equal duration resource elements in a time and frequency domain, the plurality of resource elements are segregated into a plurality of resource regions, information to be transmitted is modulated to generate a sequence of modulation symbols at a transmitter, the sequence of modulation symbols is mapped into the plurality of resource elements in the plurality of resource regions, and the modulation symbols are transmitted via a plurality of antennas using the respective corresponding resource elements to a receiver. The mapping of the modulation symbols in at least one resource region is independent of a certain control channel information that is carried in the time domain subframe, and the mapping of the modulation symbols in at least another resource region is dependent upon that certain control channel information.
Abstract:
Reliable detection of the configuration of transmit antennas includes obtaining a data for transmission, encoding the data, and modulating the data. During the modulating of the data, the data may be configured in such a way as to convey the configuration of the antennas through the modulation of the data. An antenna configuration is obtained by obtaining a representation of the antenna configuration, and masking the data with an error correcting code, where the mask corresponds to the antenna configuration.
Abstract:
A base station enables a mobile station to employ a random access retransmission scheme in a wireless communication network. The mobile station includes a plurality of antennas configured to communicate with the base station. The mobile station also includes a processing circuitry coupled to the plurality of antennas. The processing circuitry is configured to perform a random access during a random access channel (RACH) burst. The processing circuitry also is configured to at least one of: transmit a random access signal with at least one of an initial transmit power level and an initial transmit beamwidth, and, in response to a random access attempt failure, change at least one of a transmit (Tx) power level and a Tx beamwidth and retransmit the random access signal.
Abstract:
A transmitted signal estimate based on signals received in a layer i within a multiple input, multiple output transmission system and based upon selected constellation points for other, previously processed layers is quantized to a nearest constellation point. A list of candidates headed by the nearest constellation point and with remaining candidates presorted by proximity to the head is selected, for each such quantized estimate based on constellation point selections for previously processed layers. To select K best candidates for the transmitted signal estimates of the current layer i, the proximity of the candidates at the head of each list to the signal estimate for the current layer are compared, and the closest candidate is selected. The list containing the selected candidate is advanced, and proximity of the transmitted signal estimate to all list heads is again evaluated and the closest candidate selected.