Abstract:
Method and apparatus for controlling the fly height of a transducer. In some embodiments, a data pattern is written to a rotating data recording surface using a transducer having a write element, a read element and a thermal assist energy source. A first protrusion distance for the read element induced by operation of the energy source is determined responsive to first and second readback amplitudes obtained from the data pattern using different first and second power levels applied to the energy source. A second protrusion distance for the write element induced by the energy source is determined responsive to the first protrusion distance.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
In certain embodiments, a head-suspension assembly includes a resonator attached to either a head or gimbal. The resonator is configured to resonate at a predefined resonant frequency. In certain embodiments, disc drives includes a recording medium, a head-suspension assembly, and a resonator. The resonator is attached to either a head or gimbal of the head-suspension assembly. The resonator is configured to resonate at a predefined resonant frequency.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
The application discloses a sensor device to measure friction force at a head-media interface. As disclosed, the sensor device has a transducer element oriented to provide an electrical output responsive to force or strain imparted to the transducer element along an in-plane axis. Sensor circuitry is coupled to the transducer element to process the electrical output to provide an output measure of friction force. In illustrated embodiments, the head includes an actuator element which is powered on/off at an on/off frequency to cyclically protrude a localized portion of the head. The on/off frequency of the actuator is used by the sensor circuitry to detect excitation of the sensor device due to friction force at the head-media interface.
Abstract:
A heat-assisted magnetic recording device is disposed in a hermetically sealed enclosure. The device includes a slider comprising a reader, a writer, and an optical waveguide configured to couple light from a light source to a near-field transducer situated at or near an air bearing surface of the slider. The near-field transducer comprises an enlarged portion and a peg extending from the enlarged portion in a direction of the air bearing surface. A fill gas is provided within the enclosure. The fill gas comprises a mixture of a low-density, inert gas and at least one gas that oxidizes carbon, where the total carbon oxidizing gas concentration of the fill gas is 3-50% by volume. In certain embodiments, the fill gas comprises a hydrogen concentration sufficient to retard oxidation of the peg when the peg is at an operating temperature associated with write operations.
Abstract:
A change in servo active gain control values is determined from a beginning of a writing of a test region of a recording medium to an end of the writing of the test region. The servo active gain control values are read from servo marks by a read transducer of a read/write head during the writing. After writing of the test region, the test region is read by the read transducer to determine a change in recorded amplitude from the beginning of the writing to the end of the writing. A gamma value of the read/write head is determined based on the change in servo active gain control values and the change in recorded amplitude.
Abstract:
A heat-assisted magnetic recording (HAMR) head includes a reader, a writer, a writer heater, a laser, and a near-field transducer (NFT). A processor is coupled to the head and configured to perform laser writeability calibration of the head. The processor is also configured to concurrently while performing the laser writeability calibration, correct for laser induced writer protrusion (LIWP) at a writer/NFT region of the head using writer clearance calculations based on reader clearance measurements.
Abstract:
An apparatus comprises a heat-assisted magnetic recording (HAMR) head, a sensor, and a controller. The HAMR head is configured to interact with a magnetic storage medium. The sensor is configured to produce a signal indicating the occurrence of head-medium contact. The controller is configured to receive the signal and concurrently determine from the signal if the occurrence of head-medium contact is caused by a first contact detection parameter, a second contact detection parameter, or both the first and second contact detection parameters.
Abstract:
A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.