Abstract:
An electrode with little deterioration or a secondary battery with little deterioration is provided. An electrode includes a first region and a second region. The first region includes a particle containing silicon. The second region includes a particle containing silicon and a graphene compound. The second region is in contact with the first region to cover at least part thereof. Alternatively, an electrode includes a plurality of particles containing silicon and a graphene compound. Each of the plurality of particles containing silicon includes a functional group containing oxygen and carbon, a functional group containing oxygen, or a fluorine atom in at least part of the surface. The graphene compound includes at least one of carbon terminated with hydrogen and carbon terminated with fluorine in a plane of the graphene compound. The graphene compound is in contact with the plurality of particles containing silicon to closely cling thereto. The particle containing silicon preferably contains amorphous silicon or polycrystalline silicon.
Abstract:
One embodiment of the present invention provides a secondary battery that can be used in a wide temperature range and is less likely to be affected by the ambient temperature. A highly safe secondary battery is provided. Use of a positive electrode including a fluorine-containing electrolyte enables a secondary battery that can work in a wide temperature range, specifically, in the range of higher than or equal to −40° C. and lower than or equal to 85° C., preferably higher than or equal to −40° C. and lower than or equal to 150° C. An incombustible high molecular material or a nonflammable high molecular material is used for a binder. Furthermore, a solid electrolyte material may be included in the positive electrode to increase non-flammability.
Abstract:
A positive electrode active material with high charge and discharge capacity is provided. A positive electrode active material with high charge and discharge voltage is provided. A power storage device that hardly deteriorates is provided. A highly safe power storage device is provided. A novel power storage device is provided. A positive electrode active material containing lithium, a plurality of transition metals, oxygen, and an impurity element. The positive electrode active material includes a first region including a surface portion and a second region provided inward from the first region, and the concentration of a transition metal is higher in the first region than in the second region. An impurity region is included between the first region and the second region.
Abstract:
A secondary battery with favorable cycle performance is provided. Alternatively, a secondary battery with higher capacity is provided. A positive electrode active material layer including a first graphene layer, a second graphene layer, and a positive electrode active material. The first graphene layer includes a first region covering the positive electrode active material. The second graphene layer includes a second region covering the positive electrode active material and a third region overlapping with the first region. The first region includes a plane positioned between the positive electrode active material and the third region and formed of arranged six-membered carbon rings. The positive electrode active material includes a fourth region with a layered rock-salt structure. A lithium layer with a layered rock-salt structure included in the fourth region is substantially perpendicular to the plane formed of six-membered carbon rings and included in the second region.
Abstract:
To provide a method for predicting the c-axis length of a lithium compound crystal structure, a method for building a learning model for predicting a c-axis length, and a system for predicting a crystal structure having the maximum c-axis length. A method for predicting the c-axis length of a crystal structure of a lithium compound containing cobalt, nickel, and manganese includes preparing a descriptor including n values (n is an integer greater than or equal to 0) obtained by converting a crystal structure of the lithium compound in which manganese at any one or more of n sites is substituted by a metal atom among crystal structures of the lithium compound into binary data and a characteristic value of the metal atom; inputting the descriptor into a learned learning model; and outputting a predicted value of c-axis length of an optimized crystal structure and a descriptor corresponding to the optimized crystal structure as an output value of the learning model.
Abstract:
A property prediction system for a semiconductor element is provided. The property prediction system includes a memory unit, an input unit, a processing unit, and an arithmetic unit. The processing unit has a function of creating a learning data set from first data stored in the memory unit, a function of creating prediction data from second data supplied from the input unit, a function of converting qualitative data (a material name or a compositional formula) into quantitative data (the properties of an element and a composition), and a function of performing extraction or removal on the first data and the second data. The first data includes step lists of first to m-th semiconductor elements (m is an integer of 2 or more) and the properties of the first to m-th semiconductor elements. The second data includes a step list of an (m+1)-th semiconductor element. The arithmetic unit having a function of performing learning and inference of supervised learning performs learning on the basis of the learning data set and makes an inference of a semiconductor element from the prediction data.
Abstract:
A display device having a photosensing function is provided. A display device having a biometric authentication function typified by fingerprint authentication is provided. A display device having a touch panel function and a biometric authentication function is provided. The display device includes a first substrate, a light guide plate, a first light-emitting element, a second light-emitting element, and a light-receiving element. The first substrate and the light guide plate are provided to face each other. The first light-emitting element and the light-receiving element are provided between the first substrate and the light guide plate. The first light-emitting element has a function of emitting first light through the light guide plate. The second light-emitting element has a function of emitting second light to a side surface of the light guide plate. The light-receiving element has functions of receiving the first light and converting the first light into an electric signal and functions of receiving the second light and converting the second light into an electric signal. The first light includes visible light, and the second light includes infrared light.
Abstract:
An image processing method that generates high-resolution image data from low-resolution image data and an image receiving apparatus that is operated by the image processing method are provided.In the image processing method that generates high-resolution image data from low-resolution image data, the low-resolution image data is divided to generate a plurality of first image data, among the plurality of first image data, one of two adjacent image data is second image data, and the other is third image data. Surroundings of the second image data are supplemented with pixel data to generate fourth image data. The pixel data includes part of the third image data. A convolutional neural network using the fourth image data as an input is implemented, fifth image data is output from the convolutional neural network, and a plurality of the fifth image data is combined to generate high-resolution image data. The image receiving apparatus is operated by the image processing method.
Abstract:
A display device which can display a clear image and can display an image with low power consumption is provided. The display device includes an arithmetic circuit having a function of generating first to third display data, a first display portion, and a second display portion. The arithmetic circuit has a function of detecting a color region and a gray-scale region of the generated first display data and generating the second display data corresponding to an image to be displayed on the first display portion and the third display data corresponding to an image to be displayed on the second display portion, on the basis of the detection results.
Abstract:
An object of the present invention is to provide a composite material formed of an organic compound and an inorganic compound, and has an excellent carrier transporting property, an excellent carrier injecting property to the organic compound, as well as excellent transparency. A composite material of the present invention for achieving the above object is a composite material of an organic compound represented in the general formula below, and an inorganic compound. For the inorganic compound, an oxide of a transition metal, preferably an oxide of a metal belonging to groups 4 to 8 of the periodic table, in particular vanadium oxide, tantalum oxide, molybdenum oxide, tungsten oxide, rhenium oxide, and ruthenium oxide, can be used.