Abstract:
A coating comprising the reaction product of a natural oil derived polyol, a lactide and a radiation curable moiety, such as a (meth)acrylate, are disclosed.
Abstract:
The present invention is directed to a coating composition comprising (i) a corrosion inhibitor and the (ii) reaction product of a calcium compound with an acid compound. The coating composition is deposited onto a substrate prior to the application of a pre-treatment coating composition (conversion coating) onto the substrate. The present invention is also directed to a substrate that comprises a coating system that comprises such a coating composition.
Abstract:
The present invention is directed to a coating composition comprising (i) a corrosion inhibitor and the (ii) reaction product of a calcium compound with an acid compound. The coating composition is deposited onto a substrate prior to the application of a pre-treatment coating composition (conversion coating) onto the substrate. The present invention is also directed to a substrate that comprises a coating system that comprises such a coating composition.
Abstract:
Coating compositions are disclosed that include an alkoxide and a silica sol that includes silica nanoparticles and a polymerizable (meth)acrylate binding agent. The polymerizable (meth)acrylate binding agent remains substantially uncrosslinked after the coating composition has been cured to form a hard coat. Also disclosed are articles at least partially coated with a hard coat deposited from such a coating composition, methods for depositing a hard coat on at least a portion of a plastic substrate, and methods for improving the adhesion and abrasion resistance of a coating composition.
Abstract:
Disclosed are radiation curable coating compositions, cured coatings formed therefrom, related methods for coating a substrate, and related coated substrates.
Abstract:
A hard coat composition comprising an acid functional organosiloxane polyol wherein at least some of the acid functionality has been neutralized is disclosed. The hard coat is suitable for application to a substrate, and can be used without an adhesive promoting primer.
Abstract:
Disclosed are tinted, abrasion resistant coating compositions comprising polymer-enclosed color-imparting particles. Also disclosed are methods for making such a composition and substrates at least partially coated with a hard coat deposited from such a composition.
Abstract:
Multi-layer coatings are disclosed that include (a) a first layer deposited from at least one composition that includes a polymeric composition, and (b) a second layer applied over at least a portion of the first layer in which the second layer is deposited from at least one liquid composition that includes (i) a photocatalytic material, and (ii) a binder that is hydrophilic and comprises an essentially completely hydrolyzed organosilicate. Also disclosed are substrates coated with such multi-layer coatings, methods of applying such multi-layer coatings to a substrate and methods of making a painted surface easy-to-clean.
Abstract:
Multi-layer coatings are disclosed that include (1) a first layer comprising an inorganic oxide network, and (2) a second layer applied over at least a portion of the first layer, wherein the second layer is deposited from at least one liquid composition that is hydrophilic and includes an essentially completely hydrolyzed organosilicate. Also disclosed are substrates coated with such multi-layer coatings, methods of applying such multi-layer coatings to a substrate and methods for improving the anti-fouling, self-cleaning, easy-to-clean, and/or anti-fogging properties of an article.
Abstract:
A method and apparatus for selecting and allocating antennas efficiently are provided. The method includes transmitting, to a User Equipment (UE), information indicating a configuration of a plurality of Channel Status Information Reference Signals (CSI-RSs) through UE specific signaling during an initial access attempt with the UE; receiving, from the UE, CSI-RS measurement results indicating configured CSI-RSs; transmitting CSI-RSs corresponding to a set of available distributed ports (D-ports) based on received signal strength information included in results of the CSI-RS measurement; and determining a CSI-RS of a selected D-port set for use in communications based on feedback information received from the UE.