Abstract:
A testing method is provided, including providing a testing apparatus including a carrier member and a testing element, the carrier member comprising a first surface, a second surface opposing the first surface, and an elastic conductive area defined on the first surface; disposing an object-to-be-tested on the elastic conductive area; electrically connecting the testing element to the object-to-be-tested and the carrier member, to form an electric loop among the carrier member, the object-to-be-tested and the testing element. Through the design of the elastic conductive area, the object-to-be-tested can be secured with a small pressure applied thereto, and is prevented from being cracked.
Abstract:
An electronic package is provided, in which an electronic component with a conductive layer on an outer surface thereof is embedded in an encapsulant, where at least one electrode pad is disposed on an active surface of the electronic component, and at least one wire electrically connected to the electrode pad is arranged inside the electronic component, so that the conductive layer is electrically connected to the wire, such that the electrode pad, the wire and the conductive layer are used as a power transmission structure which serves as a current path to reduce DC resistance and improve an impedance issue associated with the supply of power.
Abstract:
An electronic module is provided, in which a first metal layer, an insulating layer and a second metal layer are sequentially formed on side faces and a non-active face of an electronic component to serve as a capacitor structure, where the capacitor structure is exposed from an active face of the electronic component so that by directly forming the capacitor structure on the electronic component, a distance between the capacitor structure and the electronic component is minimized, such that the effect of suppressing impedance can be optimized.
Abstract:
An electronic package is provided, in which an electronic component with a conductive layer on an outer surface thereof is embedded in an encapsulant, where at least one electrode pad is disposed on an active surface of the electronic component, and at least one wire electrically connected to the electrode pad is arranged inside the electronic component, so that the conductive layer is electrically connected to the wire, such that the electrode pad, the wire and the conductive layer are used as a power transmission structure which serves as a current path to reduce DC resistance and improve an impedance issue associated with the supply of power.
Abstract:
An electronic package is provided and has a packaging substrate including a ground pad and a power pad. The power pad surrounds at least three directions of the ground pad so as to increase the footprint of the power pad on the packaging substrate, thereby avoiding cracking of an electronic element disposed on the packaging substrate and effectively reducing the voltage drop.
Abstract:
An electronic package is provided and has a packaging substrate including a ground pad and a power pad. The power pad surrounds at least three directions of the ground pad so as to increase the footprint of the power pad on the packaging substrate, thereby avoiding cracking of an electronic element disposed on the packaging substrate and effectively reducing the voltage drop.
Abstract:
A semiconductor substrate is disclosed. The semiconductor substrate includes a substrate body having at least an opening formed on a surface thereof, wherein the surface of the substrate body and a wall of the opening are made of an insulating material; and a circuit layer formed on the surface of the substrate body, wherein the circuit layer covers an end of the opening and is electrically insulated from the opening. The opening facilitates to increase the thickness of the insulating structure between the circuit layer and the substrate body of a silicon material to prevent signal degradation when high frequency signals are applied to the circuit layer.
Abstract:
A duplexer is provided, which includes a first, a second and a third signal ports; a first filter and a second filter. The first filter has first, second, and third resonant circuits that have first, second and third inductors, respectively. The first, second and third inductors are mutually inductive. The first and third resonant circuits are electrically connected to the first and second signal ports, respectively. The second filter has fourth, fifth and sixth resonant circuits that have fourth, fifth and sixth inductors, respectively. The fourth resonant circuit is connected in series with the first resonant circuit. The fifth inductor and the fourth inductor are mutually inductive. The sixth resonant circuit is electrically connected to the third signal port. The second filter further has a main capacitor connected in series with the fifth and sixth resonant circuits respectively and located therebetween.
Abstract:
A substrate structure is provided, which includes: a first dielectric layer having a magnetic material; a circuit layer having an inductor circuit and a plurality of conductive traces; and a second dielectric layer bonded to the first dielectric layer and encapsulating the circuit layer. As such, the inductance value of the inductor circuit is increased due to the magnetic material of the first dielectric layer, thereby eliminating the need to increase the number of coils of the inductor circuit.
Abstract:
A balanced-to-unbalanced converter (balun) is provided, including: a converting circuit having a first processing circuit including a first inductor and a first capacitor connected in series, a second processing circuit including a second capacitor and a second inductor connected in series, the second capacitor being electrically connected to the first inductor, and two balanced output ends connected to the first processing circuit and the second processing circuit, respectively; and a preprocessing circuit connected to the converting circuit and including an unbalanced input end for converting real impedance at the unbalanced input end into complex impedance at the balanced output ends. Accordingly, the balun satisfies the need of the wireless communication chips by providing differential signals with complex impedance. This is done by employing the preprocessing circuit in conjunction with the converting circuit to convert an unbalanced signal with real impedance into a balanced signal with complex impedance.