摘要:
A drill bit has a bit body, a plurality of blades extending radially from the bit body, wherein each blade comprises a leading face and a trailing face, a plurality of cutter pockets disposed on the plurality of blades, at least one rolling cutter, wherein each rolling cutter is disposed in one of the cutter pockets, and wherein each rolling cutter comprises a cutting face, a cutting edge, an outer circumferential surface, and a back face. A back retainer is disposed adjacent to the back face, wherein the back retainer protrudes partially into the rolling cutter along a rotational axis of the rolling cutter, and a front retainer is disposed adjacent to the at least one rolling cutter on the leading face of the blade. Each front retainer has a retention end, wherein the retention end is positioned adjacent to a portion of the cutting face of each rolling cutter, and an attachment end, wherein the attachment end is attached to a portion of the blade.
摘要:
A cutter for a drag bit may include a substrate and an ultrahard layer on an end surface of the substrate. The ultrahard layer may include an exposed surface having at least three depressions extending from an interior of the exposed surface radially outward to a peripheral edge formed between the working surface and a side surface of the ultrahard layer, the at least three depressions separated from each other by at least three raised regions forming an apex of the exposed surface, the at least three raised regions connected to each other proximate the central axis and extending from proximate the central axis to the peripheral edge. Other working surfaces are also included.
摘要:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
摘要:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
摘要:
A method of forming a cutting element may include placing a plurality of diamond particles adjacent to a substrate in a reaction cell; and subjecting the plurality of diamond particles to high pressure high temperature conditions to form a polycrystalline diamond body; wherein the polycrystalline diamond body comprises a cutting face area to thickness ratio ranging from 60:16 to 500:5; and wherein the polycrystalline diamond body has at least one dimension greater than 8 mm
摘要:
A cutting element is provided having a substrate and an ultra hard material cutting layer over the substrate. The cutting layer includes a surface portion for making contact with a material to be cut by the cutting element. The surface portion in cross-section has a curvature that has a varying radius of curvature. A bit incorporating such a cutting element is also provided.
摘要:
A cutting element may be formed by placing a plurality of diamond particles adjacent to a substrate in a reaction cell and subjecting the plurality of diamond particles to high pressure high temperature conditions to form a polycrystalline diamond body. The polycrystalline diamond body may have a cutting face area to thickness ratio ranging from 60:16 to 500:5 and at least one dimension greater than 8 mm.
摘要:
A cutting structure may include an outer support element; and an inner rotatable cutting element comprising a cutting surface at its upper end; wherein the inner rotatable cutting element comprises at least one line contact along a circumferential side surface thereof and/or at least one point contact at a bottom face thereof.
摘要:
Diamond bonded construction comprise a diamond body attached to a support. In one embodiment, an initial substrate used to sinter the body is interposed between the body and support, and is thinned to less than 5 times the body thickness, or to less than the body thickness, prior to attachment to the support to relieve stress in the body. In another embodiment, the substrate is removed after sintering, and the body is attached to the support. The support has a material construction different from that of the initial substrate, wherein the initial substrate is selected for infiltration and the support for end use properties. The substrate and support include a hard material with a volume content that may be the same or different. Interfaces between the body, substrate, and/or support may be nonplanar. The body may be thermally stable, and may include a replacement material disposed therein.
摘要:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.