Abstract:
Embodiments may include a method of curtailing an output level of an EG system. The method may include receiving, at a processor, a first dynamic control signal. The first dynamic control signal may include an instruction to adjust an output level of an EG system to a first output level. The method may also include maintaining the output level of the EG system at the first output level for a predetermined period. The method may further include determining, by the processor, whether a second dynamic control signal is received during the predetermined period. If a second dynamic control signal is not received during the predetermined period, the method may include ramping down the output level at a predetermined rate after the predetermined period until a predetermined failsafe output level is achieved. The predetermined failsafe output level may be maintained until a third dynamic control signal is received by the processor.
Abstract:
A string inverter for use with a photovoltaic array includes a string-level DC input channel for receiving DC power from a photovoltaic array. The input channel performs channel-level maximum power point tracking. An input-output channel connects the string inverter to a battery pack. A DC to DC buck-boost circuit between the at least one DC input channel and the at least one input-output channel prevents more than a predetermined amount of DC voltage from reaching the battery pack. A DC to AC inverter circuit having an AC output serving as an output of the string inverter. A revenue grade power meter is configured to measure the AC output of the string inverter.
Abstract:
Methods, devices, and systems for controlling energy generation interactions that bypass the grid may be provided. Flow control devices may be directly connected with one another independent of electrical connections to the utility grid. In some examples, the direct connections between the devices may enable sharing of power, controlling power flow over the direct connections, and/or recording relative power flows between the devices.
Abstract:
A string inverter for use with a photovoltaic array includes at least one string-level DC input channel for receiving DC power from the photovoltaic array, and at least one input-output channel for connecting the string inverter to a battery pack. The string inverter also includes a DC to AC inverter having an AC output, and a switch configured to control a flow of power through the string inverter. When the switch is in a first state, AC power can flow from the string inverter to a load side of a customer utility meter and one or more back-up loads, in a second state, power can flow from the load side of a customer utility meter to the one or more back-up loads bypassing the string inverter, and in a third state, all circuits coupled to the output of the string inverter are electrically disconnected from the string inverter.
Abstract:
Techniques for managing connections within an energy generation network may be provided. Real-time data associated with network-connected energy generation devices at a location may be collected to determine communication channels between the devices. If it is determined that an inverter of the network is solar-powered, a wizard application may be launched to help a technician determine whether a meter will lose connectivity with a gateway device. The wizard application may provide instructions to power down the inverter. Once the inverter is powered down, it may be determined whether the metering device has lost its network connection with the gateway. If so, an instruction to install a repeater device during the installation may be provided.
Abstract:
Embodiments may include a method of curtailing an output level of an EG system. The method may include receiving, at a processor, a first dynamic control signal. The first dynamic control signal may include an instruction to adjust an output level of an EG system to a first output level. The method may also include maintaining the output level of the EG system at the first output level for a predetermined period. The method may further include determining, by the processor, whether a second dynamic control signal is received during the predetermined period. If a second dynamic control signal is not received during the predetermined period, the method may include ramping down the output level at a predetermined rate after the predetermined period until a predetermined failsafe output level is achieved. The predetermined failsafe output level may be maintained until a third dynamic control signal is received by the processor.
Abstract:
Methods for controlling an energy storage device to reduce peak power demand at a site are provided. In one embodiment, load data corresponding to a load in a utility grid-connecting energy generation (EG) system is received. The load data may be sampled at a first predetermined interval, and the EG system may include an energy storage device. A load threshold level is received, and a discharge control signal is generated. The discharge control signal may be generated when the measured load is at or above the load threshold level. The control signal may be applied to the measured load for a second predetermined interval that is longer than the first predetermined interval.
Abstract:
A computer-implemented method includes receiving power measurement data for a photovoltaic (PV)-based energy generation (EG) sites, determining if cloud cover is present over the EG site based on a difference between a present and historical power output for the EG site, calculating a density of the cloud cover over the EG site based on the present and historical power outputs, and controlling load characteristics of the EG site based on the determined presence and calculated density of the cloud cover. The density of the cloud cover is based on a percentage difference in power output between the present power output and the historical power output. A vector for the cloud cover can be determined based on movement of a detected storm system with a boundary defined by a location of a plurality of EG sites, or by a movement of the cloud density from one EG site to the next.
Abstract:
A string inverter for use with a photovoltaic array includes at least one string-level DC input channel for receiving DC power from the photovoltaic array, and at least one input-output channel for connecting the string inverter to a battery pack. The string inverter also includes a DC to AC inverter having an AC output, and a switch configured to control a flow of power through the string inverter. When the switch is in a first state, AC power can flow from the string inverter to a load side of a customer utility meter and one or more back-up loads, in a second state, power can flow from the load side of a customer utility meter to the one or more back-up loads bypassing the string inverter, and in a third state, all circuits coupled to the output of the string inverter are electrically disconnected from the string inverter.
Abstract:
Techniques are disclosed for implementing a scalable hierarchical energy distribution grid utilizing homogeneous control logic are disclosed that provide distributed, autonomous control of a multitude of sites in an energy system using abstraction and aggregation techniques. A hierarchical energy distribution grid utilizing homogeneous control logic is provided that includes multiple control modules arranged in a hierarchy. Each control module can implement a same energy optimization scheme logic to directly control site energy resources and possibly energy resources of sites associated with control modules existing below it in the hierarchy. Each control module can act autonomously through use a similar set of input values to the common optimization scheme logic.