Abstract:
A MEMS microphone includes a substrate. A dielectric layer is disposed on the substrate, having an opening and includes: indent region surrounding the opening; pillars extending from an indent surface at the indent region to the substrate; and an outer part surrounding the indent region and disposed on the substrate. A signal sensing space is created at the indent region between the pillars and between the pillars and the outer part. A first electrode layer is disposed on the indent surface of the dielectric layer. A second electrode layer is disposed on the substrate. A sensing diaphragm is held by the dielectric layer, including two elastic diaphragms supported by the dielectric layer; and a conductive plate between the first elastic diaphragm and the second elastic diaphragm. The conductive plate has a central part embedded in the holding structure and a peripheral part extending into the signal sensing space.
Abstract:
A structure of micro-electro-mechanical-system microphone includes a substrate of semiconductor, having a first opening in the substrate. A dielectric layer is disposed on the substrate, the dielectric layer has a second opening, corresponding to the first opening. A diaphragm is located within the second opening, having an embedded part held by the dielectric layer and an exposed part exposed by the second opening. The exposed part has a junction peripheral region, a buffer peripheral region and a central region. The junction region has an elastic structure with slits, the buffer peripheral region includes a plurality of holes and is disposed between the junction peripheral region and the central region. A backplate is disposed on the dielectric layer above the second opening, wherein the backplate includes venting holes distributed at a region corresponding to the central part of the diaphragm.
Abstract:
A micro electro mechanical system (MEMS) microphone includes a substrate, having a substrate opening. A supporting dielectric layer is disposed on the substrate surrounding the substrate opening. A diaphragm is supported by the supporting dielectric layer above the substrate opening, wherein the diaphragm has a bowl-like structure being convex toward the substrate opening when the diaphragm is at an operation off state. A backplate is disposed on the supporting dielectric layer over the diaphragm, wherein the backplate includes a plurality of venting holes at a region corresponding to the substrate opening.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device includes a substrate, a dielectric supporting layer, a diaphragm, a backplate. The substrate has a substrate opening corresponding to a diaphragm region. The dielectric supporting layer is disposed on the substrate, having a dielectric opening corresponding to the substrate opening to form the diaphragm region. The diaphragm within the dielectric opening is held by the dielectric supporting layer at a periphery. The backplate is disposed on the dielectric supporting layer, having a plurality of venting holes, connecting to the dielectric opening. The backplate includes a conductive layer and a passivation layer covering over the conductive layer at a first side opposite to the diaphragm, wherein a second side of the conductive layer is facing to the diaphragm and not covered by the passivation layer.
Abstract:
A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection.
Abstract:
A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
Abstract:
A method for fabricating MEMS device includes providing a silicon substrate. A structural dielectric layer is formed over a first side of the silicon substrate. Structure elements are embedded in the structural dielectric layer. The structure elements include a conductive backplate disposed over the silicon substrate, having venting holes and protrusion structures on top of the conductive backplate; and diaphragm located above the conductive backplate by a distance. A chamber is formed between the diaphragm and the conductive backplate. A cavity is formed in the silicon substrate at a second side. The cavity corresponds to the structure elements. An isotropic etching is performed on a dielectric material of the structural dielectric layer to release the structure elements. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate. A second side of the diaphragm is exposed to an environment space.