Abstract:
A prosthetic heart valve having an inflow end and an outflow end includes a stent having a collapsed condition, an expanded condition, and a plurality of cells arranged in circumferential rows. The stent may include one or more securement features. One securement feature may be an anchor arm having a body portion and a free end extending from the body portion, the body portion being coupled to a perimeter of one of the plurality of cells, with the free end extending toward the inflow end in an expanded condition of the anchor arm. Another securement feature may include a flange formed of a braided mesh and having a body portion coupled to the stent and a flared portion adjacent the inflow end of the prosthetic heart valve. A valve assembly is disposed within the stent and has a plurality of leaflets.
Abstract:
A prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows. The stent further includes engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent. A collapsible and expandable valve assembly has a plurality of leaflets disposed within the stent.
Abstract:
A prosthetic heart valve may include a stent having an inflow end, an outflow end, a collapsed condition, and an expanded condition. The prosthetic valve may also include a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets. The prosthetic valve and/or stent may include features to anchor the prosthetic valve to a native valve annulus and to seal the prosthetic valve with respect to the native valve annulus, such as planar and/or nonplanar annular sealing members coupled to ends of the stent. The stent may include one or more circumferential rows of anchor members or hooks extending radially outwardly from the stent. These hooks may be configured to extend in a particular direction when the stent is in the collapsed condition to facilitate resheathing of the stent if, upon deployment, a user determines the prosthetic heart valve is not positioned optimally.
Abstract:
A device for repair of a heart valve leaflet includes an elongated catheter assembly having a proximal end and a distal end, and a tip at the distal end of the catheter assembly. A capture mechanism having a first free end and a second free end is rotatably coupled to a distal end of the tip. A plication mechanism has an open configuration and a closed configuration, and extends between the first free end and the second free end of the capture mechanism when in the open configuration. The device may also include a clip housing at a proximal end of the tip configured to hold a clip therein.
Abstract:
A device for transcatheter gathering of tissue of a heart valve leaflet may include an elongated tube, a capture tool moveable in the tube between a retracted position and an extended position, a tissue support located within a distal portion of the tube, and a clamping member pivotable in the tube between an open position spaced from the tissue support and a closed position adjacent the tissue support. The clamping member may have a flattened clamping portion and a C-shaped portion that defines a pocket therein. An open side of the C-shaped portion may face the tissue support. The capture tool and the clamping member may be operable to gather and clamp tissue between the tissue support and the clamping member, such that the clamped tissue has a gathered configuration. The device may also include a releasable clip adapted to hold the clamped tissue in the gathered configuration.
Abstract:
An apparatus for simulation of an anatomical structure may include a left ventricle component having an inlet port configured to receive fluid flow therethrough, an aortic arch component having an outlet port configured to receive fluid flow therethrough, an aortic annulus component attached to and disposed between the left ventricle component and the aortic arch component, and an introducer configured to receive an elongated catheter assembly therethrough. The aortic annulus component may have an inner surface including simulated stenotic nodules. The introducer may be in fluid communication with at least one of the left ventricle component and the aortic arch component.
Abstract:
Techniques are provided for guidance for navigation and positioning of intravascularly delivered devices. A medical navigation system includes a delivery device comprising a catheter, an intravascularly delivered device configured to be releasably disposed in the catheter for deployment at a target site of a patient, and a navigation computer system. The intravascularly delivered device includes a plurality of electrodes including at least one indicator electrode and at least one reference electrode configured to not contact tissue when the intravascularly delivered device is deployed at the target site. The navigation computer system is configured to be electrically coupled with the plurality of electrodes. The navigation computer system controls a drive source to transmit current to the plurality of electrodes, collects electrode data corresponding to the plurality of electrodes, monitors impedance corresponding to the indicator electrode, and determines that the indicator electrode has made contact with tissue.
Abstract:
A prosthetic heart valve having an inflow end and an outflow end includes a stent having a collapsed condition, an expanded condition, and cells arranged in circumferential rows. The stent has an anterior side configured to be disposed adjacent an anterior native valve leaflet and a posterior side configured to be disposed adjacent a posterior native valve leaflet. A valve assembly having a plurality of leaflets is disposed within the stent and a flange is disposed about the stent. The flange includes a flared portion adjacent the inflow end and a body portion extending from the flared portion to the outflow end, the flange extending between a first set of attachment points adjacent the inflow end, and a second set of attachment points adjacent the outflow end.
Abstract:
A prosthetic heart valve includes stabilization features for anchoring the prosthetic heart valve within a native valve annulus. The prosthetic heart valve includes an expandable stent having an inflow end and an outflow end, and a valve assembly disposed within the stent. One such stabilization feature is a collapsible and an expandable frame formed of compliant wires. The frame has a body including a first end coupled to the stent, a second end, and a lumen extending therethrough for receiving the stent and the valve assembly. When the frame is expanded in the native valve annulus, the compliant wires form an indented region in the frame between the first and second ends of the body and a sub-annulus portion of the frame forms a bulge.