Abstract:
IL4/IL13-binding proteins comprise binding domains, which inhibit IL4/IL13 binding to IL4Ralpaha and common gamma chain complexes (Type 1) and inhibit IL4 binding to IL4Ralpha and IL13Ralpha1 complexes (Type 2), and IL13 binding to IL13Ralpha1 and/or IL13Ralpha2, are useful in the treatment of cancer, inflammatory, and other pathological conditions, such as allergic or fibrotic conditions, especially pulmonary conditions.
Abstract:
A protein scaffold based on a consensus sequence of fibronectin type III (FN3) proteins, such as the tenth FN3 repeat from human fibronectin (human Tenascin), including isolated nucleic acids that encode a protein scaffold, vectors, host cells, and methods of making and using thereof have applications in diagnostic and/or therapeutic compositions, methods and devices. In particular, protein scaffold molecules binding to IgG have been identified as useful for diagnostic and/or therapeutic applications.
Abstract:
In general, in one aspect, the invention features methods that include guiding radiation at a first wavelength, λ1, through a core of a photonic crystal fiber and guiding radiation at a second wavelength, λ2, through the photonic crystal fiber, wherein |λ1−λ2|>100 nm.
Abstract:
In general, in a first aspect, the invention features photonic crystal fibers that include a core extending along a waveguide axis, a confinement region extending along the waveguide axis surrounding the core, and a cladding extending along the waveguide axis surrounding the confinement region, wherein the cladding has an asymmetric cross-section.
Abstract:
A protein scaffold based on a consensus sequence of the tenth fibronectin type III (FN3) repeat from human fibronectin, preferably human Tenascin, that binds to human TNFα including isolated nucleic acids that encode a protein scaffold, vectors, host cells, and methods of making and using thereof have applications in diagnostic and/or therapeutic compositions, methods and devices.
Abstract:
Protein scaffolds and scaffold libraries based on a fibronectin type III (FN3) repeat with an alternative binding surface design, isolated nucleic acids encoding the protein scaffolds, vectors, host cells, and methods of making thereof are useful in the generation of therapeutic molecules and treatment and diagnosis of diseases and disorders.
Abstract:
A protein scaffold based on a consensus sequence of fibronectin type III (FN3) proteins, such as the tenth FN3 repeat from human fibronectin (human Tenascin), including isolated nucleic acids that encode a protein scaffold, vectors, host cells, and methods of making and using thereof, exhibit enhanced thermal and chemical stability while presenting six modifiable loop domains which can be engineered to form a binding partner capable of binding to a target for applications in diagnostic and/or therapeutic compositions, methods and devices.
Abstract:
A protein scaffold based on a consensus sequence of the tenth fibronectin type III (FN3) repeat from human fibronectin, including isolated nucleic acids that encode a protein scaffold, vectors, host cells, and methods of making and using thereof have applications in diagnostic and/or therapeutic compositions, methods and devices. In particular, protein scaffold molecules binding to IgG based on the consensus sequence have been identified as useful for diagnostic and/or therapeutic applications.