Abstract:
A method of calculating a time difference is disclosed. The method includes sampling a first ultrasonic signal (r21) to produce a first sampled signal (y1(i)) and sampling a second ultrasonic signal (r12) to produce a second sampled signal (y2(i)). A first time (LEAD_LAG) is determined between a time the first sampled signal crosses a threshold (θ1) and a time the second sampled signal crosses the threshold. The first sampled signal is cross correlated with the second sampled signal to produce a second time (SAMP_OFFSET). The time difference is calculated in response to the first and second times.
Abstract:
A frequency modulated continuous wave (FMCW) radar system that includes a transceiver coupled to an analog to digital converter (ADC), and a digital signal processor (DSP) coupled to the ADC. The transceiver is configured to transmit a plurality of FMCW chirps, receive a plurality of reflected FMCW chirps, and mix the plurality of reflected FMCW chirps with at least one of the FMCW chirps to generate a plurality of beat signals. The reflected FMCW chirps are the FMCW chirps after being reflected off of a target object. The ADC is configured to convert the beat signals into a plurality of digital chirps. The DSP is configured to receive the digital chirps and quantify a plurality of vibration parameters for the target object based on a comparison of phase information in a frequency domain between one of the plurality of FMCW chirps and one of the plurality of digital chirps.
Abstract:
A method of calculating a time difference is disclosed. The method includes sampling a first ultrasonic signal (r21) to produce a first sampled signal (y1(i)) and sampling a second ultrasonic signal (r12) to produce a second sampled signal (y2(i)). A first time (LEAD_LAG) is determined between a time the first sampled signal crosses a threshold (θ1) and a time the second sampled signal crosses the threshold. The first sampled signal is cross correlated with the second sampled signal to produce a second time (SAMP_OFFSET). The time difference is calculated in response to the first and second times.
Abstract:
A method, system and apparatus is disclosed for auto-tuning a circuit associated with an upstream transducer (UPT) and a circuit associated with a downstream transducer (DNT) for reciprocal operation in an ultrasonic flowmeter. The method includes exchanging signals between the upstream transducer and the downstream transducer; comparing at least one of respective maximum amplitudes of an upstream signal and a downstream signal and respective center frequencies of a Fast Fourier Transform (FFT) of the upstream signal and the downstream signal; and responsive to determining that at least one of the respective maximum amplitudes and the respective center frequencies do not match, correcting the mismatch.
Abstract:
A VBUS conductor is checked to determine whether a voltage on the VBUS conductor is greater than a vSafe0V voltage within a detect time interval. A device policy manager applies a vSafeDB voltage to the VBUS conductor when the voltage on the VBUS conductor is greater than the vSafe0V voltage. The policy engine waits for a bit stream to be detected within a timer interval. When the bit stream is not detected within the timer interval, the device policy manager is instructed to apply the vSafe0V voltage to the VBUS conductor. The device policy manager applies a vSafe5V voltage to the VBUS conductor when the bit stream is detected, and the policy engine waits for the bit stream to stop within a device ready timer interval. When the bit stream has stopped within the device ready timer interval, the policy engine sends capabilities as a source port.
Abstract:
A frequency modulated continuous wave (FMCW) radar system that includes a transceiver coupled to an analog to digital converter (ADC), and a digital signal processor (DSP) coupled to the ADC. The transceiver is configured to transmit a plurality of FMCW chirps, receive a plurality of reflected FMCW chirps, and mix the reflected FMCW chirps with at least one of the FMCW chirps to generate a plurality of beat signals. The reflected FMCW chirps are the FMCW chirps after being reflected off of a target object. The ADC is configured to convert the beat signals into a plurality of digital chirps. The DSP is configured to receive the digital chirps and quantify a relative velocity of the target object as compared to a velocity of the FMCW radar system by removing an effect of a range to the target object from a two dimensional range Doppler processing signal.
Abstract:
Systems and methods for enabling co-existence among power line communications (PLC) technologies are described. In some embodiments, a method performed by a PLC device, such as a PLC gateway, may include searching for and detecting a co-existence preamble on a PLC network while not transmitting or receiving frames. The device waits a time period before attempting transmission of a frame if the coexistence preamble is detected and is not followed by a native preamble. Transmissions are resumed to the PLC network after expiration of the time period.
Abstract:
A multi-channel flow sensing system typically includes first and second flow-sensing transducers arranged in each channel. A data acquisition system is coupled to the first and second transducers of each of the channels. The data acquisition system is arranged to transmit and/or receive a sensing signal from at least one of the first and second transducers of each of the channels. The received sensing signals are sequentially converted and accumulated as data for billing in accordance with the measured flow within each channel. Using common components within the data acquisition system for measuring the various channels reduces costs and increases affordability in cost-sensitive areas.
Abstract:
A multi-channel flow sensing system typically includes first and second flow-sensing transducers arranged in each channel. A data acquisition system is coupled to the first and second transducers of each of the channels. The data acquisition system is arranged to transmit and/or receive a sensing signal from at least one of the first and second transducers of each of the channels. The received sensing signals are sequentially converted and accumulated as data for billing in accordance with the measured flow within each channel. Using common components within the data acquisition system for measuring the various channels reduces costs and increases affordability in cost-sensitive areas.
Abstract:
A flow meter ultrasonically measures fluid velocity in a pipe and ultrasonically transmits fluid flow data along the pipe. An ultrasonic transducer used for fluid velocity measurement may optionally also be used for communication of flow data, and optionally, the ultrasonic frequency for fluid velocity measurement may be the same as the ultrasonic frequency for communication of flow data.