Abstract:
A piezoelectric sensor with: (i) a capacitive element, comprising piezoelectric material; (ii) a pre-conditioning circuit, comprising circuitry for establishing a polarization of the capacitive element in a polarizing mode; and (iii) signal amplification circuitry for providing a piezoelectric-responsive output signal, in response to charge across the capacitive element in a sensing mode.
Abstract:
A method forming a packaged semiconductor device includes providing a first semiconductor die (first die) having bond pads thereon mounted face-up on a package substrate or on a die pad of a lead frame (substrate), wherein the substrate includes terminals or contact pads (substrate pads). A first dielectric layer is formed including printing a first dielectric precursor layer including a first ink having a first liquid carrier solvent extending from the substrate pads to the bond pads. A first interconnect precursor layer is printed including a second ink having a second liquid carrier over the first dielectric layer extending from the substrate pads to the bond pads. Sintering or curing the first interconnect precursor layer removes at least the second liquid carrier to form an electrically conductive interconnect including an ink residue which connects respective substrate pads to respective bond pads.
Abstract:
A MEMS device is formed by applying a lower polymer film to top surfaces of a common substrate containing a plurality of MEMS devices, and patterning the lower polymer film to form a headspace wall surrounding components of each MEMS device. Subsequently an upper polymer dry film is applied to top surfaces of the headspace walls and patterned to form headspace caps which isolate the components of each MEMS device. Subsequently, the MEMS devices are singulated to provide separate MEMS devices.
Abstract:
A method forming a packaged semiconductor device includes providing a first semiconductor die (first die) having bond pads thereon mounted face-up on a package substrate or on a die pad of a lead frame (substrate), wherein the substrate includes terminals or contact pads (substrate pads). A first dielectric layer is formed including printing a first dielectric precursor layer including a first ink having a first liquid carrier solvent extending from the substrate pads to the bond pads. A first interconnect precursor layer is printed including a second ink having a second liquid carrier over the first dielectric layer extending from the substrate pads to the bond pads. Sintering or curing the first interconnect precursor layer removes at least the second liquid carrier to form an electrically conductive interconnect including an ink residue which connects respective substrate pads to respective bond pads.
Abstract:
An ultrasonic transducer. The ultrasonic transducer has an interposer having electrical connectivity contacts. The ultrasonic transducer also has an ultrasonic receiver, comprising an array of receiving elements, physically fixed relative to the interposer and coupled to electrically communicate with electrical connectivity contacts of the interposer. The ultrasonic transducer also has at least one ultrasonic transmitter, separate from the ultrasonic receiver, physically fixed relative to the interposer and coupled to electrically communicate with electrical connectivity contacts of the interposer.
Abstract:
Disclosed embodiments demonstrate batch processing methods for producing optical windows for microdevices. The windows protect the active elements of the microdevice from contaminants, while allowing light to pass into and out of the hermetically sealed microdevice package. Windows may be batch produced, reducing the cost of production, by fusing multiple metal frames to a single sheet of glass. In order to allow windows to be welded atop packages, disclosed embodiments keep a lip of metal without any glass after the metal frames are fused to the sheet of glass. Several techniques may accomplish this goal, including grinding grooves in the glass to provide a gap that prevents fusion of the glass to the metal frames along the outside edges in order to form a lip. The disclosed batch processing techniques may allow for more efficient window production, taking advantage of the economy of scale.
Abstract:
An integrated circuit containing a capacitive microphone with a back side cavity located within the substrate of the integrated circuit. Access holes may be formed through a dielectric support layer at the surface of the substrate to provide access for etchants to the substrate to form the back side cavity. The back side cavity may be etched after a fixed plate and permeable membrane of the capacitive microphone are formed by providing etchants through the permeable membrane and through the access holes to the substrate.
Abstract:
An integrated circuit containing a capacitive microphone with a back side cavity located within the substrate of the integrated circuit. Access holes may be formed through a dielectric support layer at the surface of the substrate to provide access for etchants to the substrate to form the back side cavity. The back side cavity may be etched after a fixed plate and permeable membrane of the capacitive microphone are formed by providing etchants through the permeable membrane and through the access holes to the substrate.