Abstract:
A variety of methods and arrangements for controlling the exhaust gas temperature of a lean burn, skip fire controlled internal combustion engine are described. In one aspect, an engine controller includes an aftertreatment system monitor and a firing timing determination unit. The aftertreatment monitor obtains data relating to a temperature of one or more aftertreatment elements, such as a catalytic converter. Based at least partly on this data, the firing timing determination unit generates a firing sequence for operating the engine in a skip fire manner such that the temperature of the aftertreatment element is controlled within its effective operating range.
Abstract:
A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
Abstract:
Various methods and arrangements for determining a combustion control parameter for a working chamber in an engine are described. In one aspect, an engine controller includes a firing counter that stores a firing history for the working chamber. A combustion control module is used to determine a combustion control parameter, which is used to help manage combustion in the working chamber. The combustion control parameter is determined based at least in part on the firing history.
Abstract:
A variety of methods and arrangements for controlling the operation of an internal combustion engine in a skip fire variable displacement mode are described. Generally, an engine is controlled to operate in a skip fire variable displacement mode. In one aspect, the spark timing associated with each fired working cycle is based at least in part on the firing history of the fired working chamber.