Abstract:
A method for fabricating a DRAM cell having a crown-type capacitor over a semiconductor substrate is disclosed. The method includes steps of: (a) forming a transistor over the semiconductor substrate; (b) forming an insulating layer over the transistor; (c) selectively etching the insulating layer to form a contact opening; (d) forming a first conducting layer over the insulating layer and filling into the contact opening; (e) forming an etching stop layer and a mask layer over the first conducting layer; (f) pattering the mask layer to form a plurality of openings; (g) forming a dielectric spacer on the sidewall of the mask layer, and removing exposed portions of the etching stop layer; (h) anisotropically etching the mask layer and the first conducting layer by using the dielectric spacer as a mask, to expose, respectively, the etching stop layer and the insulating layer; (i) removing uncovered etching stop layer to expose the first conducting layer; (j) anisotropically etching the first conducting layer to a predetermined depth by using the dielectric spacer as a mask, thereby forming a crown-type storage electrode; (k) removing the dielectric spacer and the etching stop layer; (l) forming a dielectric layer over exposed portions of the storage electrode; and (m) forming a second conducting layer as an opposite electrode over the dielectric layer.
Abstract:
The present invention discloses a DRAM structure with multiple memory cells sharing the same bit-line contact. The DRAM structure of the present invention comprises: a substrate; an active region formed on the substrate, with a center region and a plurality of protrusion regions connecting to the two sides of the center region; a plurality of word-lines, disconnected from each other, each crossing the corresponding protrusion region; a plurality of channel regions, formed where the protrusion region overlaps with the word-lines; a plurality of source regions, formed at the outer areas of the channel regions; a sharing drain region, formed at the center region of the active region; a bit-line contact, formed on surface of the sharing drain region; a bit-line, crossing the center region and electrically connected to the sharing drain region via the bit-line contact; a plurality of capacitors, electrically connected to the source regions; and a plurality of metal lines, electrically connected to the corresponding word-lines.
Abstract:
A liquid crystal display panel is disclosed, including: a first substrate; a second substrate opposite to the first substrate; a plurality of first, second and third spacers disposed between the first substrate and the second substrate, the distribution density of the first spacers being larger than that of the second spacers and the distribution density of the third spacers being larger than that of the first spacers. The liquid crystal display panel can effectively reduce image display defects caused by the gravity mura, the press mura and the push mura.
Abstract:
A liquid crystal display apparatus includes M data lines arranged in columns, N scanning lines arranged in rows, and pixels determined by intersection of the M data lines and the N scanning lines. M and N are integers greater than 1. The N scanning lines are divided into 2K scanning line groups; K is an integer greater than or equal to 1; and the scanning lines in each scanning line group are connected with pixels having the same polarity. The liquid crystal display apparatus further includes: 2K driving components, each of which corresponding to one scanning line group and being configured to provide a plurality of levels of outputs, each level of outputs being connected with one scanning line in the scanning line group to activate the scanning line. Thus, power consumption can be saved effectively.
Abstract:
The present invention discloses an array substrate and a defect detecting method thereof. The array substrate comprises one or more shorting bars for applying signals to a plurality of data lines or a plurality of gate lines of the array substrate while testing. The array substrate further comprises a line detecting circuit for receiving signals on the plurality of data lines or the plurality of gate lines, and detecting and locating the line defects of the plurality of data lines or the plurality of gate lines. The array substrate and the defect detecting method thereof provided by the invention can locate the line defects of the array substrate accurately and quickly.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
A liquid crystal panel includes a plurality of pixel units, each of which include gating lines, data lines, a pixel electrode and a thin film transistor (TFT). Common electrodes of first pixel units in a same row are electrically connected via a first common line, and common electrodes of second pixel units in the same row are electrically connected via a second common line. The first common line is connected with a first common voltage and the second common voltage is connected with a second common voltage. The first common voltage and the second common voltage are alternating current voltages and have opposite polarities in the same frame. The liquid crystal panel can decrease power consumption of a source driver and lower cost of the liquid crystal panel.
Abstract:
A low color shift liquid crystal display and a driving method thereof are provided. The liquid crystal display comprises a plurality of data lines; a plurality of scanning lines arranged across the plurality of data lines, two adjacent scanning lines and two adjacent data lines arranged across the two adjacent scanning lines together defining a pixel region; and a plurality of pixels each comprising a first and a second sub-pixels. The first sub-pixel is connected to a first scanning line of the two adjacent scanning lines, the second sub-pixel includes a compensation capacitor, which is coupled to a second scanning line of the two adjacent scanning lines. Thereby a voltage difference can be maintained between the two sub-pixels under the same driving condition, and the voltage difference can be easily adjusted by suitably changing the waveforms of scanning drive signals on the scanning lines.
Abstract:
A driving method for a liquid crystal display (LCD) panel is provided. The method comprises applying corresponding overdriving data for source data to the LCD panel at the beginning of a frame; applying black data to the LCD panel before the end of the frame, wherein the polarities of the applied black data are the same as the pixel electrode driving polarity at the beginning of a next frame; and applying the source data to the LCD panel at a time between the application of the overdriving data and the application of the black data. The driving method of the invention eliminates the need for large TFTs by reducing the voltage change between the end of a previous frame and the beginning of a current frame, and also can perform pre-charging for the pixel electrodes without adding any other device.