摘要:
The present invention provides a semiconductor device manufacturing line for applying a series of processes on a semiconductor substrate, and forming an integrated circuit on the semiconductor substrate by employing a semiconductor wafer having a diameter of 6 inches (150±3 mm: SEAJ specification) or less for the semiconductor substrate. This manufacturing line comprises two sub-lines conforming to the same specifications, each of these sub-lines is composed of a series of processing units including a film forming unit, a pattern exposure unit, an etching unit, and a test unit. In at least one pattern exposure unit and one etching unit, fine processing of 0.3 μm or less can be performed.
摘要:
A device for positioning a semiconductor substrate is provided comprising magnetic field group formed from a plurality of magnetic fields disposed on a plane in a two-dimensional array. The magnetic fields are provided with a perpendicular orientation relative to the plane and adjacent magnetic fields are directed in alternate directions. Coil sets are formed of a plurality of coils, the coils having a specific dimensional relationship with the magnetic field array. Coil groups are formed by fixedly securing a plurality of these coil sets to each other the coil groups being disposed within the magnetic field group so as to be freely movable along the plane. Electric current is applied to the coils which generates a force in each coil set so as to move the coil set in either one of the longitudinal and lateral directions of the array of magnetic fields, whereby a current-motion converter and a driving device making use of the converter can be formed.
摘要:
Positioning of a movable body can be achieved at a high resolution by making use of two position signals generated by a position detector, whose magnitudes are sinusoidal functions having different phases of the position of the movable body. On the basis of the two sinusoidal position signals, two bi-level digital position signals having different phase from each other are derived, and digital control for movement of the movable body is effected by making use of these two bi-level digital position signals until the movable body is brought into the proximity of a desired position. Thereafter, control is switched from the digital control to analog control for movement of the movable body, in which a position signal whose manitude is a sinusoidal function of the position of the movable body and has a zero-cross point at the desired position is used as a reference position signal. This reference position signal can be synthesized from the two position signals generated by the position detector by means of a simple signal synthesizer circuit according to the present invention. The signal synthesizer circuit comprises two multiplier type digital-analog converters, each of which is applied with a digital input signal and an analog input signal such as, for example, the above-mentioned sinusoidal position signal generated by the position detector and generates an analog output signal that is product including an algebraic sign of the digital input signal and the analog input signal, and an adder having the respective analog output signals of the two multiplier type digital-analog converters applied to its input. By appropriately selecting the digital values of the digital input signals, a desired reference position signal can be derived at the output of the adder.
摘要:
The present invention provides a semiconductor device manufacturing line for applying a series of processes on a semiconductor substrate, and forming an integrated circuit on the semiconductor substrate by employing a semiconductor wafer having a diameter of 6 inches (150±3 mm: SEAJ specification) or less for the semiconductor substrate. This manufacturing line comprises two sub-lines conforming to the same specifications, each of these sub-lines is composed of a series of processing units including a film forming unit, a pattern exposure unit, an etching unit, and a test unit. In at least one pattern exposure unit and one etching unit, fine processing of 0.3 μm or less can be performed.
摘要:
A carrying system 1 has a carrying path which is laid out in such a manner as to pass through the lower sides of loading table 11 and the like provided at the front face side of treating devices 10, 100, 200, and covered by a cover 5. As the carrying path is positioned below the loading tables, the occupying areas of the loading table 11 and the like and portions of the region of the carrying path are shared so that space saving is achieved, and the accessibility to the treating device 10, 100 or the like from the front side thereof is improved, thereby realizing a layout which facilitates maintenance. A loading surface 11d or the like of the loading table 11 is set to a height which allows a conventional overhead-type carrying system 2 and unmanned carrying vehicle 3 of a floor-type carrying system to load an object on the loading surface, thereby ensuring the co-existence with the other carrying systems.
摘要:
The present invention provides a semiconductor device manufacturing line for applying a series of processes on a semiconductor substrate, and forming an integrated circuit on the semiconductor substrate by employing a semiconductor wafer having a diameter of 6 inches (150±3 mm: SEAJ specification) or less for the semiconductor substrate. This manufacturing line comprises two sub-lines conforming to the same specifications, each of these sub-lines is composed of a series of processing units including a film forming unit, a pattern exposure unit, an etching unit, and a test unit. In at least one pattern exposure unit and one etching unit, fine processing of 0.3 μm or less can be performed.
摘要:
A device for transferring a LCD substrate under a reduced pressure atmosphere comprises a first stage on which the LCD substrate is mounted such that the surface of the LCD substrate is substantially horizontal, a multi-joint arm mechanism for mounting the LCD substrate on a second stage of a delivery position after moving the first stage in substantially horizontal plane, a mechanism for pushing the LCD substrate on the first and second stages, and for positioning the LCD substrate at a home position.
摘要:
Load lock chambers having a function of detecting positional deviation of wafers are provided in a process chamber of an ion injection apparatus, two on a carrying-in side, and two on a carrying-out side. One load lock chamber on the carrying-in side and one on the carrying-out side are used as a standby. Carrying-in carrying-out members and are outside of the process chamber. Two transfer members are in the process chamber. A dummy wafer stage is formed at a position which can be accessed by the transfer members. Wafers are transferred from load stages by the carrying-in member via the load lock chambers to the process chamber through a double operation line. Loading a wafer on the turn table and unloading a wafer therefrom can be performed simultaneously by operations of the transfer members and. The wafers are similarly carried out of the apparatus in a double operation line. At this time, dummy wafers in the process chamber can be used, if necessary.
摘要:
A handling apparatus, used for handling a carrier of semiconductor wafers, comprises a first mechanism for transferring a carrier between a loader/unloader table and a storage compartment, and a second mechanism, for moving the first mechanism in both vertical and horizontal directions. The first mechanism includes an arm, a loading portion for loading the carrier, and an arm-rocking mechanism. The second mechanism moves the first mechanism to the loader/unloader table, picks up the carrier, and then moves the first mechanism to the storage compartment, where the arm is rocked, so as to discharge the object from the loading portion.
摘要:
The present invention provides a semiconductor device manufacturing line for applying a series of processes on a semiconductor substrate, and forming an integrated circuit on the semiconductor substrate by employing a semiconductor wafer having a diameter of 6 inches (150±3 mm: SEAJ specification) or less for the semiconductor substrate. This manufacturing line comprises two sub-lines conforming to the same specifications, each of these sub-lines is composed of a series of processing units including a film forming unit, a pattern exposure unit, an etching unit, and a test unit. In at least one pattern exposure unit and one etching unit, fine processing of 0.3 μm or less can be performed.