Abstract:
A method of manufacturing includes providing a casting assembly, providing a material having solid, transition, and liquid phases, heating the material to form the liquid phase, supplying the material to the casting assembly, cooling the material, monitoring the solidification of the material from the liquid phase through the transition phase, and moving one of the casting mold or the reusable core in a first direction relative to the other when a substantial portion of the reusable core contacts the transition phase. The casting assembly comprises a casting mold and a reusable core inserted within the casting mold.
Abstract:
A method of manufacturing a component in a die casting cell that includes a die casting system according to an exemplary aspect of the present disclosure includes, among other things, isolating a first chamber from a second chamber of the die casting system, melting a charge of material in the first chamber, sealing the second chamber relative to the first chamber, and simultaneously injecting the charge of material within the second chamber to cast the component and melting a second charge of material within the first chamber.
Abstract:
A process for directional solidification of a cast part comprises energizing a primary inductive coil coupled to a chamber having a mold containing a material; generating an electromagnetic field with the primary inductive coil within the chamber, wherein said electromagnetic field is partially attenuated by a susceptor coupled to said chamber between said primary inductive coil and said mold; determining a magnetic flux profile of the electromagnetic field after it passes through the susceptor; sensing a component of the magnetic flux in the interior of the susceptor proximate the mold; positioning a mobile secondary compensation coil within the chamber; generating a control field from a secondary compensation coil, wherein said control field controls said magnetic flux; and casting the material within the mold.
Abstract:
A method of fabricating a casting is provided. The method includes creating a mixture of ceramic powder and a binder, pouring the mixture around sacrificial patterns, executing a first thermal treatment to set the mixture into a solid mold without damaging the sacrificial patterns, executing a second thermal treatment to remove the sacrificial patterns without removing any of the binder from the solid mold, executing at least one of a third thermal treatment and a chemical treatment to remove a quantity of the binder to transform the solid mold into a solid breakaway mold and pouring molten metallic material into the solid breakaway mold.
Abstract:
A process for directional solidification of a cast part comprises energizing a primary inductive coil coupled to a chamber having a mold containing a material; generating an electromagnetic field with the primary inductive coil within the chamber, wherein said electromagnetic field is partially attenuated by a susceptor coupled to said chamber between said primary inductive coil and said mold; determining a magnetic flux profile of the electromagnetic field after it passes through the susceptor; sensing a component of the magnetic flux in the interior of the susceptor proximate the mold; positioning a mobile secondary compensation coil within the chamber; generating a control field from a secondary compensation coil, wherein said control field controls said magnetic flux; and casting the material within the mold.
Abstract:
Shot sleeves for high temperature die casting include a nickel-based alloy having a low modulus single crystal with axi-symmetric orientation.
Abstract:
A die casting system includes a die including a plurality of die components that define a die cavity, a single crystal shot tube in fluid communication with the die cavity, and a shot tube plunger tip moveable within the shot tube to communicate a charge of a molten or semi-molten material into the die cavity. The system further includes a vacuum chamber that applies a vacuum to render a die casting process wherein at least a portion of the die is positioned within the vacuum chamber.
Abstract:
A die casting system includes a die including at least one die component that defines a die cavity, a spar received within a portion of said die cavity, a shot tube in fluid communication with the die cavity, and a shot tube plunger moveable within the shot tube to communicate a molten metal into the die cavity to cast a hybrid component. The spar establishes an internal structure of the hybrid component, and one of the internal structures and an outer structure of said hybrid component is an equiaxed structure.
Abstract:
Shot sleeves for high temperature die casting include a nickel-based alloy having a low modulus single crystal with axi-symmetric orientation.
Abstract:
A method of investment casting includes casting a liquid nickel- or cobalt-based superalloy in an investment casting mold. The superalloy includes an yttrium alloying element that is subject to reactive loss during the casting. Loss of the yttrium is limited by using a zircon-containing facecoat on a refractory investment wall in the investment casting mold. The facecoat contacts the liquid nickel- or cobalt-based superalloy during the casting. Prior to the casting, a zircon-containing slurry is used to form the facecoat. After solidification of the nickel- or cobalt-based superalloy, the refractory investment wall is removed from the solidified superalloy.