Abstract:
An exemplary gas turbine engine includes a fan bypass duct defined between a fan nacelle and core cowl of an engine core. The engine core includes a cooled cooling air system configured to receive cooling air from a primary flowpath bleed at a diffuser within the engine core and configured to provide cooled cooling air to at least one component within the engine core. The cooled cooling air system including an air-air heat exchanger.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. The HEX may comprise a central manifold comprising an inlet portion, a first outlet portion, and a second outlet portion. The HEX may further comprise a plurality of tubes coupled to the central manifold, the plurality of tubes comprising at least a first tube, a second tube, a third tube, and a fourth tube, a shroud at least partially encasing said plurality of tubes, and a cooling air flow path defined by at least one of the shroud, the plurality of tubes, and an outer surface of the central manifold, wherein the cooling air flow path is orthogonal to said plurality of tubes.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. An adjustable damper is provided. The adjustable damper may be for damping a movement of the HEX relative to the gas turbing engine. An adjustable damper may comprise: a first tube; a second tube located at least partially within the first tube; a housing coupled to the second tube; a moveable member, the moveable member comprising a contacting surface in contact with the second tube; an adjusting member adjustably coupled to the housing; and a spring member located between the moveable member and the adjusting member, the spring member configured to at least one of compress or decompress in response to adjusting member moving relative to the housing.
Abstract:
A gas turbine engine has a compressor rotor with blades and a disk. A bore is defined radially inwardly of the disk. A combustor includes a burner nozzle. A tap taps air that has been combusted in the combustor section through a valve, and into the bore of the disk. A method is also disclosed.
Abstract:
A gas turbine engine has a compressor section including a lower pressure compressor and a higher pressure compressor, and a turbine section. A core engine housing surrounds the compressor section and the turbine section. An outer intermediate housing wall defines an internal chamber between the core housing and the outer intermediate housing. A fan rotor and a fan casing surround the fan rotor to define a bypass duct between the fan case and the outer intermediate housing. A heat exchanger is mounted in the internal chamber and receives high pressure air for cooling the high pressure air and delivering the high pressure air into the core engine housing to be utilized as cooling air for a component. Air from the lower pressure compressor is utilized to cool the higher pressure air in the heat exchanger.
Abstract:
A heat exchanger system for use in a gas turbine engine has a plurality of circumferentially spaced heat exchangers. The spaced heat exchangers are formed of a nickel alloy material including more than 50-percent by volume gamma-prime intermetallic phase material. A gas turbine engine is also disclosed.
Abstract:
A heat exchanger array includes a first row of heat exchangers, a second row of heat exchangers, and side curtains. The first row heat exchangers are spaced apart to define first gaps. The second row heat exchangers are spaced apart to define second gaps and are positioned downstream of and staggered from the first row heat exchangers such that the second row heat exchangers are aligned with the first gaps and the first row heat exchangers are aligned with the second gaps. Each side curtain is in close proximity to a first row heat exchanger and a second row heat exchanger. The side curtains define a neck region upstream of and aligned with each first row heat exchanger and each second row heat exchanger. Each neck region has a neck area that is less than a frontal area of the heat exchanger with which it is aligned.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. The HEX may comprise a central manifold comprising an inlet portion, a first outlet portion, and a second outlet portion. The HEX may further comprise a plurality of tubes coupled to the central manifold, the plurality of tubes comprising at least a first tube, a second tube, a third tube, and a fourth tube, a shroud at least partially encasing said plurality of tubes, and a cooling air flow path defined by at least one of the shroud, the plurality of tubes, and an outer surface of the central manifold, wherein the cooling air flow path is orthogonal to said plurality of tubes.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. The HEX may comprise an intake manifold in fluid communication with a compressor section and configured to receive air from the compressor section, an outtake manifold in fluid communication with the intake manifold via a tube, and a cooling air flow path defined by at least one of an outer surface of the tube, an outer surface of the intake manifold, and an outer surface of the outtake manifold, wherein the cooling air flow path is orthogonal to said tube. The air from the intake manifold may travel through the tube to the outtake manifold and from the outtake manifold to a portion of the gas turbine engine.
Abstract:
A heat exchanger (HEX) for cooling air in a gas turbine engine is provided. An adjustable damper is provided. The adjustable damper may be for damping a movement of the HEX relative to the gas turbing engine. An adjustable damper may comprise: a first tube; a second tube located at least partially within the first tube; a housing coupled to the second tube; a moveable member, the moveable member comprising a contacting surface in contact with the second tube; an adjusting member adjustably coupled to the housing; and a spring member located between the moveable member and the adjusting member, the spring member configured to at least one of compress or decompress in response to adjusting member moving relative to the housing.