Abstract:
A method of assembling a floating wind turbine platform includes forming a base assembly of the floating wind turbine platform in either a cofferdam or a graving dock built in water having a first depth. The base assembly includes a keystone and a plurality of buoyant bottom beams extending radially outward of the keystone, wherein longitudinal axes of each of the plurality of bottom beams are coplanar. The cofferdam or the graving dock is flooded and the assembled base assembly is floated to an assembly area in water having a second depth. A center column and a plurality of outer columns are assembled or formed on the base assembly, a tower is assembled or formed on the center column, and a wind turbine is assembled on the tower, thereby defining the floating wind turbine platform.
Abstract:
A method of assembling a floating wind turbine platform includes assembling a keystone having a hollow central cavity from pre-formed concrete sections, and assembling a plurality of buoyant bottom beams from pre-formed concrete sections. Each bottom beam is attached to, and extends radially outward of the keystone to define a base assembly. Each buoyant bottom beam includes a ballast chamber therein. The keystone is post-tensioned to each bottom beam along a longitudinal axis thereof. A center column is assembled upwardly and perpendicularly on the base assembly from pre-formed sections of the center column, the outer columns are assembled on a distal end of each bottom beam from pre-formed sections of the outer columns, and the center column and the outer columns are longitudinally post-tensioned to the base assembly. A tower is assembled on the center column from pre-formed sections, and a wind turbine is assembled on the tower.
Abstract:
A method of constructing and assembling a floating wind turbine platform includes constructing pre-stressed concrete sections of a floating wind turbine platform base, assembling the floating wind turbine platform base sections to form the base at a first location in a floating wind turbine platform assembly area, and moving the base to a second location in the floating wind turbine platform assembly area. Pre-stressed concrete sections of floating wind turbine platform columns are constructed, and the column sections are assembled to form a center column and a plurality of outer columns on the base to define a hull at the second location in the floating wind turbine platform assembly area. The hull is then moved to a third location in the floating wind turbine platform assembly area. Secondary structures are mounted on and within the hull, and the hull is moved to a fourth location in the floating wind turbine platform assembly area. A wind turbine tower is constructed on the center column, and a wind turbine is mounted on the wind turbine tower, thus defining the floating wind turbine platform. The floating wind turbine platform is then moved to a launch platform in a fifth location and launched into a body of water.
Abstract:
A wind turbine platform configured to float in a body of water and support a wind turbine thereon includes a buoyant hull platform. A wind turbine tower is centrally mounted on the hull platform and a wind turbine is mounted to the wind turbine tower. An anchor is connected to the hull platform and to the seabed, and a weight-adjustable mass is suspended from the hull platform.
Abstract:
A weldable hybrid composite panel suitable for forming a container includes a four sided composite panel element wherein each side defines a side edge. The composite panel element is formed of fibrous reinforcement layers encased in a resin matrix. Weldable metallic elongated edge elements extend along and are either fixed to the side edges of an outside surface of the panel element or extend from a periphery of the panel element. Each of the weldable elongated edge elements has a profile that is the same as a profile of its respective side edge and is structured to enable the composite panel to be welded at its peripheral edges. The panel element also includes a sensor system embedded therein.
Abstract:
A container includes a plurality of weldable hybrid composite panels. Each panel includes a four sided composite panel element, wherein each of the four sides defines a side edge and the composite panel element is formed of fibrous reinforcement layers encased in a resin matrix. Weldable metallic elongated edge elements extend along and are either fixed to the side edges of an outside surface of the panel element or extend from a periphery of the panel element, such that each of the weldable elongated edge elements has a profile that is the same as a profile of its respective side edge. The weldable elongated edge elements are structured to enable the composite panel to be welded at its peripheral edges. The container also includes a plurality of metal rails attached together and defining a rectangular parallelepiped frame having six sides. At least one of the plurality of weldable hybrid composite panels is welded at its edge elements to the rails of each of the six sides of the frame or to an adjacent one of the plurality of weldable hybrid composite panels.
Abstract:
A semi-submersible wind turbine platform is configured for floating in a body of water and supporting a wind turbine, and includes a center column, at least three tubular bottom beams extending radially outward of a first axial end of the center column, the center column configured to have a tower attached to a second axial end thereof, outer columns, wherein a first axial end of each outer column attached to a distal end of one of the bottom beams, and top beams, one of which extends between a second axial end of each outer column and the second axial end of the center column.
Abstract:
A tuned mass damper (TMD) system in combination with a floating offshore wind turbine (FOWT) platform includes a barge type FOWT platform having a hull configured to have a wind turbine tower mounted thereon. A TMD system is mounted in the hull and has a first TMD configured to operate at a first frequency, and a second TMD configured to operate at a second frequency different than the first frequency.
Abstract:
A method of assembling and deploying a floating offshore wind turbine (FOWT) platform includes floating a buoyant floater and a hollow outer tank in a floating assembly, placing permanent ballast material in the outer tank to define a mass, and sinking the mass to a seabed. The buoyant floater is moved to a position over the mass. Transit lines are attached between a lifting device in the buoyant floater and the mass to define a FOWT platform. The mass is lifted to a point directly under the buoyant floater and the FOWT platform is towed to an installation site. Mooring lines are attached between anchors in the seabed and the buoyant floater, and the mass is lowered to a depth wherein suspension lines attached thereto are taught, the mass with the suspension lines defining a suspended mass. The transit lines are then stored or removed from the mass.
Abstract:
A motion absorbing system and method for a structure includes the coupling of a container to a structure. The container has a liquid disposed therein wherein a ullage is defined above a surface of the liquid. An elastic element is positioned in the liquid. The elastic element has a natural frequency tuned to damp motion of the liquid.