Abstract:
Wafer treatment process and apparatus is provided with a wafer carrier arranged to hold wafers and to inject a fill gas into gaps between the wafers and the wafer carrier. The apparatus is arranged to vary the composition, flow rate, or both of the fill gas so as to counteract undesired patterns of temperature non-uniformity of the wafers.
Abstract:
Wafer treatment process and apparatus is provided with a wafer carrier arranged to hold wafers and to inject a fill gas into gaps between the wafers and the wafer carrier. The apparatus is arranged to vary the composition, flow rate, or both of the fill gas so as to counteract undesired patterns of temperature non-uniformity of the wafers.
Abstract:
A wafer carrier assembly for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition (CVD), the wafer carrier assembly includes a wafer carrier body formed symmetrically about a central axis, and including a generally planar top surface that is situated perpendicularly to the central axis and a planar bottom surface that is parallel to the top surface. At least one wafer retention pocket is recessed in the wafer carrier body from the top surface. Each of the at least one wafer retention pocket includes a floor surface and a peripheral wall surface that surrounds the floor surface and defines a periphery of that wafer retention pocket. At least one thermal control feature includes an interior cavity or void formed in the wafer carrier body and is defined by interior surfaces of the wafer carrier body.
Abstract:
A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into a rotating-disc reactor and directed downwardly onto a wafer carrier and substrates which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-250° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.