Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.
Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
Abstract:
A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
Abstract:
Wafer treatment process and apparatus is provided with a wafer carrier arranged to hold wafers and to inject a fill gas into gaps between the wafers and the wafer carrier. The apparatus is arranged to vary the composition, flow rate, or both of the fill gas so as to counteract undesired patterns of temperature non-uniformity of the wafers.