Abstract:
A substrate carrier that supports a semiconductor substrate in a chemical vapor deposition system that includes a support having a beveled inner top surface including a top surface and a bottom surface. The top surface has a recessed area for receiving at least one substrate for chemical vapor deposition processing. The bottom surface has a beveled edge that forms a conical interface with the beveled inner top surface of the support at a self-locking angle that prevents substrate carrier movement in a vertical direction at a predetermined temperature equal to a maximum operation temperature. A coefficient of thermal expansion of a material forming the substrate carrier is substantially the same as a coefficient of thermal expansion of a material forming the support.
Abstract:
A rotating disk reactor for chemical vapor deposition includes a vacuum chamber and a ferrofluid feedthrough comprising an upper and a lower ferrofluid seal that passes a motor shaft into the vacuum chamber. A motor is coupled to the motor shaft and is positioned in an atmospheric region between the upper and the lower ferrofluid seal. A turntable is positioned in the vacuum chamber and is coupled to the motor shaft so that the motor rotates the turntable at a desired rotation rate. A dielectric support is coupled to the turntable so that the turntable rotates the dielectric support when driven by the shaft. A substrate carrier is positioned on the dielectric support in the vacuum chamber for chemical vapor deposition processing. A heater is positioned proximate to the substrate carrier that controls the temperature of the substrate carrier to a desired temperature for chemical vapor deposition.
Abstract:
A self-centering wafer carrier system for a chemical vapor deposition (CVD) reactor includes a wafer carrier comprising an edge. The wafer carrier at least partially supports a wafer for CVD processing. A rotating tube comprises an edge that supports the wafer carrier during processing. An edge geometry of the wafer carrier and an edge geometry of the rotating tube being chosen to provide a coincident alignment of a central axis of the wafer carrier and a rotation axis of the rotating tube during process at a desired process temperature.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A self-centering wafer carrier system for a chemical vapor deposition (CVD) reactor includes a wafer carrier comprising an edge. The wafer carrier at least partially supports a wafer for CVD processing. A rotating tube comprises an edge that supports the wafer carrier during processing. An edge geometry of the wafer carrier and an edge geometry of the rotating tube being chosen to provide a coincident alignment of a central axis of the wafer carrier and a rotation axis of the rotating tube during process at a desired process temperature.
Abstract:
Wafer carrier arranged to hold a plurality wafers and to inject a fill gas into gaps between the wafers and the wafer carrier for enhanced heat transfer and to promote uniform temperature of the wafers. The apparatus is arranged to vary the composition, flow rate, or both of the fill gas so as to counteract undesired patterns of temperature non-uniformity of the wafers. In various embodiments, the wafer carrier utilizes at least one plenum structure contained within the wafer carrier to source a plurality of weep holes for passing a fill gas into the wafer retention pockets of the wafer carrier. The plenum(s) promote the uniformity of the flow, thus providing efficient heat transfer and enhanced uniformity of wafer temperatures.
Abstract:
A method of in-situ temperature measurement for a wafer treatment reactor such as a chemical vapor deposition reactor desirably includes the steps of heating the reactor until the reactor reaches a wafer treatment temperature and rotating a wafer support element within the reactor about a rotational axis. The method desirably further includes, while the wafer support element is rotating about the rotational axis, obtaining first operating temperature measurements using a first operating pyrometer that receives radiation from a first portion of the wafer support element, and obtaining first wafer temperature measurements using a wafer temperature measurement device that receives radiation from at least one wafer, the wafer temperature measurement device located at a first position.
Abstract:
A chemical vapor deposition reactor and method. Reactive gases, such as gases including a Group III metal source and a Group V metal source, are introduced into the chamber (10) of a rotating-disc reactor and directed downwardly onto a wafer carrier (32) and substrates (40) which are maintained at an elevated substrate temperature, typically above about 400° C. and normally about 700-1100° C. to deposit a compound such as a III-V semiconductor. The gases are introduced into the reactor at an inlet temperature desirably above about 75° C. and most preferably about 100°-350° C. The walls of the reactor may be at a temperature close to the inlet temperature. Use of an elevated inlet temperature allows the use of a lower rate of rotation of the wafer carrier, a higher operating pressure, lower flow rate, or some combination of these.