摘要:
The profile of a structure having a region with a spatially varying property is modeled using an optical metrology model. A set of profile parameters is defined for the optical metrology model to characterize the profile of the structure. A set of layers is defined for a portion the optical metrology model that corresponds to the region of the structure with the spatially varying property, each layer having a defined height and width. For each layer, a mathematic function that varies across at least a portion of the width of the layer is defined to characterize the spatially varying property within a corresponding layer in the region of the structure.
摘要:
A system for examining a patterned structure formed on a semiconductor wafer using an optical metrology model includes a first fabrication cluster, a metrology cluster, an optical metrology model optimizer, and a real time profile estimator. The first fabrication cluster processes a wafer, the wafer having a first patterned and a first unpatterned structure. The metrology cluster measures diffraction signals off the first patterned and first unpatterned structure. The metrology model optimizer optimizes an optical metrology model of the first patterned structure. The real time profile estimator creates an output comprising underlying film thickness, critical dimension, and profile of the first patterned structure.
摘要:
In allocating processing units of a computer system to generate simulated diffraction signals used in optical metrology, a request for a job to generate simulated diffraction signals using multiple processing units is obtained. A number of processing units requested for the job to generate simulated diffraction signals is then determined. A number of available processing units is determined. When the number of processing units requested is greater than the number of available processing units, a number of processing units is assigned to generate the simulated diffraction signals that is less than the number of processing units requested.
摘要:
A system for examining a patterned structure formed on a semiconductor wafer using an optical metrology model includes a first fabrication cluster, a metrology cluster, an optical metrology model optimizer, and a real time profile estimator. The first fabrication cluster configured to process a wafer, the wafer having a first patterned and a first unpatterned structure. The first patterned structure has underlying film thicknesses, critical dimension, and profile. The metrology cluster including one or more optical metrology devices coupled to the first fabrication cluster. The metrology cluster is configured to measure diffraction signals off the first patterned and the first unpatterned structure. The metrology model optimizer is configured to optimize an optical metrology model of the first patterned structure using one or more measured diffraction signals off the first patterned structure and with floating profile parameters, material refraction parameters, and metrology device parameters. The real time profile estimator is configured to use the optimized optical metrology model from the optical metrology model optimizer, the measured diffraction signals off the first patterned structure, and a fixed value within the range of values for at least one parameter from amongst the material refraction parameters and the metrology device parameters. The real time profile estimator is configured to create an output comprising underlying film thickness, critical dimension, and profile of the first patterned structure.
摘要:
The present invention includes a method and system for determining the profile of a structure in an integrated circuit from a measured signal, the signal measured off the structure with a metrology device, selecting a best match of the measured signal in a profile data space, the profile data space having data points with a specified extent of non-linearity, and performing a refinement procedure to determine refined profile parameters. One embodiment includes a refinement procedure comprising finding a polyhedron in a function domain of cost functions of the profile library signals and profile parameters and minimizing the total cost function using the weighted average method. Other embodiments include profile parameter refinement procedures using sensitivity analysis, a clustering approach, regression-based methods, localized fine-resolution refinement library method, iterative library refinement method, and other cost optimization or refinement algorithms, procedures, and methods. Refinement of profile parameters may be invoked automatically or invoked based on predetermined criteria such as exceeding an error metric between the measured signal versus the best match profile library.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.
摘要:
To manage data flow in generating profile models for use in optical metrology, a project data object is created. A first profile model data object is created. The first profile model data object corresponds to a first profile model defined using profile parameters. A version number is associated with the first profile model data object. The first profile model data object is linked with the project data object. At least a second profile model data object is created. The second profile model data object corresponds to a second profile model defined using profile parameters. The first and second profile models are different. Another version number is associated with the second profile model data object. The second profile model data object is linked with the project data object. The project data object, the first profile model data object, and the second profile model data object are stored. The version numbers associated with the first profile model data object and the second profile model data object are stored. The link between the first profile model data object and the project data object is stored. The link between the second profile model data object and the project data object is stored.
摘要:
An optical metrology model for a structure to be formed on a wafer is developed by characterizing a top-view profile and a cross-sectional view profile of the structure using profile parameters. The profile parameters of the top-view profile and the cross-sectional view profile are integrated together into the optical metrology model. The profile parameters of the optical metrology model are saved.
摘要:
Structures formed on a semiconductor wafer are consecutively measured by obtaining first and second measured diffraction signals of a first structure and a second structure formed abutting the first structure. The first and second measured diffraction signals were consecutively measured using a polarized reflectometer. The first measured diffraction signal is compared to a first simulated diffraction signal generated using a profile model of the first structure. The profile model has profile parameters that characterize geometries of the first structure. One or more features of the first structure are determined based on the comparison. The second measured diffraction signal is converted to a converted diffraction signal. The converted diffraction signal is compared to the first simulated diffraction signal or a second simulated diffraction signal generated using the same profile model as the first simulated diffraction signal. One or more features of the second structure are determined based on the comparison.
摘要:
Structures formed on a semiconductor wafer are consecutively measured by obtaining first and second measured diffraction signals of a first structure and a second structure formed abutting the first structure. The first and second measured diffraction signals were consecutively measured using an angle-resolved spectroscopic scatterometer. The first measured diffraction signal is compared to a first simulated diffraction signal generated using a profile model of the first structure. The profile model has profile parameters, characterize geometries of the first structure, and an azimuth angle parameter, which define the angle between the plane of incidence beam and direction of periodicity of the first or second structure. One or more features of the first structure are determined based on the comparison. The second measured diffraction signal is compared to a second simulated diffraction signal generated using the same profile model as the first simulated diffraction signal with the azimuth angle parameter having a value that is about 90 degrees different than the value of the azimuth angle parameter used to generate the first simulated diffraction signal. One or more features of the second structure are determined based on the comparison of the second measured diffraction signal to the second simulated diffraction signal.