Abstract:
The present disclosure generally relates to a system for data seclusion in image & audio files comprises a data processing unit for receiving input signals and converting into digitized image and audio data; a compressor unit for reducing size of the digitized image and audio data using a j-bit encoding at a variable rate; an encryption unit for encrypting the compressed digitized image and audio data using an advanced encryption standard (AES); a control unit for stripping the encrypted compressed digitized image and audio data into a plurality of portions, wherein the control unit generates a cryptographic key for decrypting every encrypted image and audio data; and a blockchain database configured with a cloud server for receiving the portions of the encrypted compressed digitized image and audio data and proportionately storing the portions of the encrypted compressed digitized image and audio data onto a plurality of storage media.
Abstract:
For monitoring the tube arrangement, the measuring system of the invention includes, connected to the transmitter electronics, a temperature measuring arrangement having a first temperature sensor for producing a temperature signal dependent on a temperature of a first of the measuring tubes of the tube arrangement and at least a second temperature sensor for producing a temperature signal dependent on a temperature of a second of the measuring tubes of the tube arrangement. In the method of the invention, it is provided that, in the case of medium flowing through the tube arrangement, a temperature difference existing between the at least two measuring tubes as a result plugging is ascertained and, in case the ascertained temperature difference deviates from a predetermined limit value for the temperature difference representing a non-plugged tube arrangement, a partial plugging of the tube arrangement, especially a plugging of exactly one of the measuring tubes, is signaled.
Abstract:
Method for operating a thermal, flow measuring device and a thermal, flow measuring device having a first sensor having a first heatable, resistance thermometer and at least one additional, second sensor having a second heatable, resistance thermometer, wherein a decision coefficient is calculated according to the formula DC=(PC1−PC2)/PC1, wherein PC1(t=t1)=(t1)/(T1,heated;actual(t=t1)−Tmedium;actual(t=t1)) and P2,2(t=t2)=P2,2(t2)/(T2,heated;actual(t=t2)−Tmedium;actual(t=t2)), with P being the heating powers absorbed by the corresponding resistance thermometers at the points in time t and the temperature values T, wherein the value of the decision coefficient shows flow direction of a measured medium in the measuring tube.
Abstract:
A measuring transducer comprising at least one measuring tube for conveying a flowing medium. The measuring tube vibrates at least at times during operation. A sensor arrangement, which serves to register oscillations of the at least one measuring tube. The measuring tube extends with an oscillatory length between an inlet-side, first measuring tube end, and an outlet-side, second measuring tube end, and, during operation, oscillates about an oscillation axis, which is parallel to or coincides with an imagined connecting axis which imaginarily connects the two measuring tube ends. By means of a first oscillation sensor, the sensor arrangement produces a first primary signal of the measuring transducer representing vibrations of the measuring tube, and by means of a second oscillation sensor the sensor arrangement produces a second primary signal of the measuring transducer representing vibrations of the measuring tube, wherein a length of a region of the first measuring tube extending between the first oscillation sensor and the second oscillation sensor defines a measuring length of the measuring transducer. The oscillation sensors of the sensor arrangement are placed in the measuring transducer in such a way that a measuring transducer sensitivity, SACT, referenced to a theoretical sensitivity at a maximum measuring length corresponding to the oscillatory length, as well as a signal amplitude, of the primary signals actually achieved during operation, referenced to a theoretically maximum possible signal amplitude, AMAX, at the location of maximum oscillation amplitude, fulfill the condition ℛ = A ACT A MAX · S ACT S MAX = ! Max .
Abstract translation:一种测量传感器,包括用于传送流动介质的至少一个测量管。 至少在操作过程中,测量管至少会振动。 传感器装置,其用于记录至少一个测量管的振荡。 测量管以入口侧,第一测量管端和出口侧,第二测量管端之间的振荡长度延伸,并且在操作期间围绕摆动轴振荡,该振荡轴与想象的平行或重合 连接轴,其连接两个测量管端。 通过第一振动传感器,传感器装置产生表示测量管振动的测量传感器的第一主信号,并且借助于第二振荡传感器,传感器装置产生测量传感器的第二主信号,其表示振动 所述测量管,其中在所述第一振动传感器和所述第二振动传感器之间延伸的所述第一测量管的区域的长度限定所述测量换能器的测量长度。 传感器装置的振荡传感器被放置在测量传感器中,使得测量传感器灵敏度SACT以与振荡长度相对应的最大测量长度的理论灵敏度以及信号幅度参考 在最大振荡幅度的位置以理论上最大可能的信号幅度AMAX为参考,实际实现的主信号满足条件ℛ= A ACT A MAX·S ACT S MAX =! 最大
Abstract:
A power system includes a plurality of power generation units configured to generate power from a renewable energy source and a server that includes a display. The server is configured to establish a communication with the plurality of power generation units and display a status of the plurality of power generation units on the display.
Abstract:
A method for monitoring communication in a wind farm network. A server is attached to one or more network nodes in a wind farm network. The server determines whether it is capable of communicating with each of the network nodes and reports the results as a network state. A graphical representation of the network state may be displayed to a user.
Abstract:
Systems and methods are described for managing bit errors present in an encoded bit stream representative of a portion of an audio signal, wherein the encoded bit stream is received via a channel in a wireless communications system. The channel may comprise, for example, a Synchronous Connection-Oriented (SCO) channel or an Extended SCO (eSCO) channel in a Bluetooth wireless communications system.
Abstract:
A bit error concealment (BEC) system and method is described herein that detects and conceals the presence of click-like artifacts in an audio signal caused by bit errors introduced during transmission of the audio signal within an audio communications system. A particular embodiment of the present invention utilizes a low-complexity design that introduces no added delay and that is particularly well-suited for applications such as Bluetooth® wireless audio devices which have low cost and low power dissipation requirements.
Abstract:
The invention relates to novel betulinic acid derivatives of formula (I), wherein R is C(═CH2) CH3 or CH(CH3)2; R2 together with the adjacent carbonyl group forms a carboxylic acid, carboxylic acid ester or amide or substituted amide; R3 or R4 are hydrogen or aryl with the proviso that both are not independently hydrogen or alkyl or R3 and R4 are combined together to form an aryl ring optionally substituted with a group X, wherein X is selected from halogen, alkyl, cyano, nitro, alkoxy, amino or substituted amine; Y is N or O; and R1 is zero when Y is O, and R1 is hydrogen, alkyl or aryl alkyl when Y is N, useful for inhibition of tumor cancer cells.
Abstract:
A method for testing a computer application includes identifying components of a version of the application, said components including one or more components that are one of new and modified, generating a keyword matrix of the identified application components. A search is performed in a test script repository with respect to components listed as at least one of the first and second dimensions of the matrix. The keyword matrix is populated with test case identification numbers in the search result. Based on the populated keyword matrix, one or more of (a) gaps in test case coverage for the version of the application, and (b) one or more test cases covering the version of the application are identified.