Abstract:
The invention comprises a charged particle beam acceleration and/or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
Abstract:
The invention relates to a method and apparatus for determining actual points along a positively charged particle beam path and/or vectors of the charged particle beam path, where the determined points and vectors aid tomographic construction of a three-dimensional image of a tumor and surrounding tissue. Further, the determined points and vectors of the positively charged particle beam are used in beam control safety, to modify a tumor treatment plan in real time, and/or in combination with co-gathered X-ray images to form a hybrid proton tomography—X-ray three-dimensional image. Preferably, common elements, such as an injector, accelerator, beam transport system, and/or patient positioning system are used for both tumor treatment and tumor imaging.
Abstract:
The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.
Abstract:
A multi-field cancer therapy apparatus and method of use thereof is described increasing dimensionality of incident tumor treatment angles while minimizing distance between a final beamline focusing magnet and the patient. Increased dimensionality of incident tumor treatment angles is achieved through coordinated use of one or more of: a rotatable targeting magnet; a first patient rotation platform rotating the patient around, without intersecting, a vertical axis; a second patient rotation platform rotating a body part through a movable vertical axis; and patient tilt. The increased charged particle incident angle dimensionality distributes Bragg peak tail energy about the tumor. Dynamic energy and/or intensity control of the charged particle beam as a function of efficiency of beam delivery based on tumor shape further reduces Bragg peak tail energy delivered to healthy tissue about the tumor.
Abstract:
The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.
Abstract:
A rotatable patient positioning apparatus and method of use thereof is described in combination with a rotatable magnet at a termination of a beamline arc. The rotatable patient positioning system optionally: (1) rotates a median of the person in place about a vertical axis and/or (2) rotates the entire person along a path around a vector, such as a vertical axis, where no part of the person intersects the vector. The rotatable targeting magnet rotates independently of a beamline arc at the end of the beamline arc, where the arc is after an accelerator and before the patient in a cancer therapy system. The rotatable targeting magnet directs the charged particle beam, such as vertically, using applied current to the targeting magnet while rotation of the magnet allows scanning across the tumor. The rotatable patient positioning system and targeting magnet combine to target the tumor in three-dimensions.
Abstract:
A multi-field cancer therapy apparatus and method of use thereof is described increasing dimensionality of incident tumor treatment angles while minimizing distance between a final beamline focusing magnet and the patient. Increased dimensionality of incident tumor treatment angles is achieved through coordinated use of one or more of: a rotatable targeting magnet; a first patient rotation platform rotating the patient around, without intersecting, a vertical axis; a second patient rotation platform rotating a body part through a movable vertical axis; and patient tilt. The increased charged particle incident angle dimensionality distributes Bragg peak tail energy about the tumor. Dynamic energy and/or intensity control of the charged particle beam as a function of efficiency of beam delivery based on tumor shape further reduces Bragg peak tail energy delivered to healthy tissue about the tumor.
Abstract:
A charged particle cancer therapy system is used to accelerate an anion, such a C−, and to convert the anion to a cation, such as C6+, through use of one or more electron extraction subsystems. A first example of an electron extraction subsystem is a hydrogen gas electron stripping system. A second example of an electron extraction subsystem is a carbon foil electron stripping system. The resultant cation is accelerated in a synchrotron, transported along a beam-line, and targeted to a tumor resulting in ablation of the tumor.
Abstract:
An imaging system apparatus and method of use thereof is described in combination with a co-movable charged particle beamline apparatus element, such as one or more elements held and dynamically positioned by a gantry, where the method and apparatus are optionally elements of a positively charged particle cancer therapy system. In one embodiment, an X-ray imaging element is rigidly and semi-permanently attached to and co-moved with a proton directing element. For example, as the gantry relocates one or more elements of a proton beamline arc, the X-ray beam is mechanically forced to co-relocate with the proton directing element and/or the final proton beam path.
Abstract:
A charged particle cancer therapy system is used to accelerate an anion, such a C−, and to convert the anion to a cation, such as C6+, through use of one or more electron extraction subsystems. A first example of an electron extraction subsystem is a hydrogen gas electron stripping system. A second example of an electron extraction subsystem is a carbon foil electron stripping system. The resultant cation is accelerated in a synchrotron, transported along a beam-line, and targeted to a tumor resulting in ablation of the tumor.