摘要:
A compact lightweight gantry for a proton therapy system that has a source-to-axis distance (SAD) of less than 2 m and can deliver a proton beam of superior quality. The reduced SAD leads to reduced requirements on the maximum magnetic fields that can be generated by the bend magnets in the gantry beamline. Correspondingly, lightweight bend magnets can be used. The various components in the gantry beamline are optimized to achieve a beam spot size of approximately 4 mm sigma or less through a pencil beam scanning nozzle disposed downstream of the final bending magnet. In addition, the proton therapy system is configured to operate at a maximum beam energy in the range of 220-230 MeV.
摘要:
A particle therapy system includes a particle accelerator to output a particle beam; and a scanning system for the particle accelerator to scan the particle beam across at least part of an irradiation target. The scanning system is configured to scan the particle beam in two dimensions that are at an angle relative to a direction of the particle beam. A structure defines an edge. The structure is controllable to move in the two dimensions relative to the irradiation target such that at least part of the structure is between at least part of the particle beam and the irradiation target. The structure includes a material that inhibits transmission of the particle beam.
摘要:
A particle therapy system includes a particle accelerator to output a particle beam; and a scanning system for the particle accelerator to scan the particle beam across at least part of an irradiation target. The scanning system is configured to scan the particle beam in two dimensions that are at an angle relative to a direction of the particle beam. A structure defines an edge. The structure is controllable to move in the two dimensions relative to the irradiation target such that at least part of the structure is between at least part of the particle beam and the irradiation target. The structure includes a material that inhibits transmission of the particle beam.
摘要:
A fast magnet switching method and apparatus used to rapidly redirect cations, such as H+ or C6+, in a beam path, such as during or between treatment of individual volumes or voxels of a tumor of the patient, is described. Switching means include rapidly increasing or decreasing applied current to a coil about a magnet, which rapidly alters a magnetic field crossing the charged particle path and redirects a charged particle beam away from the patient, such as to a charged particle beam stop. Means to rapidly induce the current change include: (1) using a separate high voltage power supply and/or (2) opening a switch to redirect current through a resistor. In both cases, the rapid current change to the coil yields a rapid change the magnetic field and a corresponding rapid change in direction of the charged particles in the charged particle cancer therapy system.
摘要:
A rotatable patient positioning apparatus and method of use thereof is described in combination with a rotatable magnet at a termination of a beamline arc. The rotatable patient positioning system optionally: (1) rotates a median of the person in place about a vertical axis and/or (2) rotates the entire person along a path around a vector, such as a vertical axis, where no part of the person intersects the vector. The rotatable targeting magnet rotates independently of a beamline arc at the end of the beamline arc, where the arc is after an accelerator and before the patient in a cancer therapy system. The rotatable targeting magnet directs the charged particle beam, such as vertically, using applied current to the targeting magnet while rotation of the magnet allows scanning across the tumor. The rotatable patient positioning system and targeting magnet combine to target the tumor in three-dimensions.
摘要:
Coherent electronic current, which can be used to generate coherent radiation, is generated by first generating and transmitting an array of discrete electron beamlets from a nanocathode array along a longitudinal axis. The array of electron beamlets is then focused to reduce the spacing that separates the electron beamlets. The transverse-axis spacing of the electron beamlets is then transferred to the longitudinal axis via an emittance exchange beamline, creating a periodically modulated distribution of coherent electronic current. The coherent electronic current can then be directed into a stream of photons to generate coherent radiation.
摘要:
The invention relates to a drum assembly for a linear accelerator, the drum assembly comprising a drum having a front face including a front rim and a rear face including a rear rim, one or more support wheels supporting the drum, an arm extending from the front face of the drum and including a beam collimator through which a beam of radiation is emitted to form a radiation isocentre. One or more rear rim members are associated with the rear rim, the rear rim members adapted to substantially offset isocentre distortion due to unintended movement of the drum assembly. The invention also relates to variants thereto and combinations thereof.
摘要:
A drift tube may include a middle portion, arranged as a hollow cylinder, and coupled to receive an RF voltage signal. The drift tube may include a first end portion, adjacent to and electrically connected to the middle portion. The middle portion and the first end portion may define a central opening to conduct an ion beam therethrough, along a direction of beam propagation. The first end portion may include a first focus assembly, and a second focus assembly, where the first focus assembly and the second focus assembly are movable with respect to one another along the direction of beam propagation, from a first configuration to a second configuration.
摘要:
A rotatable targeting magnet apparatus and method of use thereof is described where the rotatable targeting magnet rotates independently of a beamline arc at the end of the beamline arc, where the arc is after an accelerator and before the patient in a cancer therapy system. The rotatable targeting magnet directs the charged particle beam, such as vertically, using applied current to the targeting magnet while rotation of the magnet allows scanning across the tumor. Rotation of the patient relative to the charged particle allows distribution of trailing Bragg peak energy within and/or circumferentially about the tumor.
摘要:
A fast magnet switching method and apparatus used to rapidly redirect cations, such as H+ or C6+, in a beam path, such as during or between treatment of individual volumes or voxels of a tumor of the patient, is described. Switching means include rapidly increasing or decreasing applied current to a coil about a magnet, which rapidly alters a magnetic field crossing the charged particle path and redirects a charged particle beam away from the patient, such as to a charged particle beam stop. Means to rapidly induce the current change include: (1) using a separate high voltage power supply and/or (2) opening a switch to redirect current through a resistor. In both cases, the rapid current change to the coil yields a rapid change the magnetic field and a corresponding rapid change in direction of the charged particles in the charged particle cancer therapy system.