Abstract:
A novel method for scanning multiple images in a single scanning process is disclosed. The process utilizes at least a frame holder, which contains a front frame section and a back frame section that are glued together at their top edges and are separable at least at their bottom to allow a sheet of scanning material to be placed therebetween. Each of the front and back frame sections contains a cluster of matching orientation holes on their right and left sides with a predetermined pattern to allow a computer program to achieve scan area recognition and orientation. During the scanning process, the at least one frame holder containing the image is scanned, wherein the sides of the frame holder are detected as black signals and the orientation holes are detected as white signals. Then a computer program is used to perform a previewing recognition process by detecting and carving out a scanning area corresponding to each frame holder based on the black signals and the white signals of the frame holder. The frame holder can contain a plurality of scanning windows, and more than one frame holder can be utilized in the same scanning process.
Abstract:
A method is provided in one example embodiment that includes measuring a delay between a transmitter and a receiver in a network environment, where the receiver is associated with a buffer. A minimum absorption buffer size for lossless transmission to a queue may be determined based on the delay and a transmission bandwidth, and buffer units for the queue can be allocated based on the minimum absorption buffer size. The transmitter may also be rate-limited if the minimum absorption buffer size exceeds available storage of the buffer. In other embodiments, buffer units can be reclaimed if the available buffer storage exceeds the minimum absorption buffer size.
Abstract:
An exemplary electronic device includes an electronic component, a heat dissipation device, a fixing member and a casing contained the electronic component, the heat dissipation device and the fixing member therein. The heat dissipation device thermally contacts the electronic component. The fixing member includes a main body and an engaging portion extending from the main body. The engaging portion fixes the heat dissipation device to the fixing member. Fasteners extend through the casing and engage the main body of the fixing member to secure the fixing member on the casing.
Abstract:
An LED lamp includes a heat sink, a heat pipe and an LED. The heat sink includes a connecting core and fins mounted around the connecting core. Each of the fins includes a plate-shaped main body and a flange extending perpendicularly from a periphery side of the main body. The flanges of the fins cooperatively form an annular planar top surface of the heat sink. The heat pipe includes a condensing section, an evaporating section parallel to and higher than the condensing section and an adiabatic section connected between the condensing section and the evaporating section. The condensing section is fixed to and thermally connects with the top surface of the heat sink. The LED is directly mounted on the evaporating section with a light emitting surface thereof facing outwardly.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
The present invention discloses an LDO (Low DropOut) linear voltage regulator, which is based on an NMC (Nested Miller Compensation) architecture and can be capacitor-free, wherein an active resistor is added to the feedback path of the Miller compensation capacitor to increase the controllability of the damping factor, solve the problem of extensively using the output capacitor with a parasitic resistance, and solve the problem that a compromise must be made between the damping factor control and the system loop gain. Further, the present invention utilizes a capacitor-sharing technique to reduce the Miller capacitance required by the entire system and accelerate the stabilization of output voltage without influencing stability.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
An apparatus for shear testing bonds on 8″ and 12″ silicon substrates. The apparatus includes a removable platform for securing the 8″ wafer and a vacuum chuck for securing a 12″ wafer and the removable platform at the same time. A control module controls a moving mechanism to shift a probe to contact the solder ball of the 12″ substrate secured on the vacuum chuck or the solder ball of the 8″ wafer on the removable platform when the removable platform is fixed on the vacuum chuck. The moving mechanism moves the probe in a direction to separate the solder ball from the wafer. A sensor measures the pulling force exerted on the probe when the probe is moved in a direction and separates the solder ball from the wafer.
Abstract:
An apparatus for shear testing bonds on 8″ and 12″ silicon substrates. The apparatus includes a removable platform for securing the 8″ wafer and a vacuum chuck for securing a 12″ wafer and the removable platform at the same time. A control module controls a moving mechanism to shift a probe to contact the solder ball of the 12″ substrate secured on the vacuum chuck or the solder ball of the 8″ wafer on the removable platform when the removable platform is fixed on the vacuum chuck. The moving mechanism moves the probe in a direction to separate the solder ball from the wafer. A sensor measures the pulling force exerted on the probe when the probe is moved in a direction and separates the solder ball from the wafer.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.