Abstract:
A process for preparing a phase change ink including (a) subjecting a white colorant to acoustic mixing at an acceleration of from about 30 to about 110 g; (b) optionally, adding a dispersant and subjecting the white colorant and dispersant to further acoustic mixing at an acceleration of from about 30 to about 110 g; (c) separately melt mixing an optional antioxidant, an optional synergist, and a phase change ink carrier comprising (i) a branched triamide and (ii) a polyethylene wax, a Fischer Tropsch wax, or a mixture or combination thereof, to form a melt mixture; (d) adding the melt mixture of (c) to the acoustically mixed white colorant of (a) or (b) with stirring; (e) optionally, adding a fluorescent dye with stirring; and (d) optionally, filtering the phase change ink.
Abstract:
An aqueous ink composition including water; a co-solvent; an encapsulated resinous pigment; a polymer latex; and a low molecular weight humectant solute; wherein the total solids content of the aqueous ink is from about 2 to about 25 percent by weight based on the total weight of the aqueous ink composition.
Abstract:
A transfix surface member for use in aqueous ink jet printer comprises a substrate. A conformance layer is disposed on the substrate layer. A surface layer comprising a siloxane polymer network is on the conformance layer. The siloxane polymer network comprises a plurality of diphenylsiloxane moieties and a plurality of polar moieties, the diphenylsiloxane moieties and polar moieties being bonded to the siloxane polymer network by one or more siloxane linkages. An indirect printing apparatus employing the transfix surface member is also disclosed.
Abstract:
The disclosed systems and methods provide an ink-based digital printing system for printing high quality images on a wide latitude of image receiving media. The disclosed systems and methods employ a UV curable base (transfix) layer deposited on an intermediate image transfer member that is then at least partially cured prior to an aqueous ink being deposited on the base layer to form a digital image thereon. Once the images are formed on the base layer, a drying device is optionally used to reduce a water content of the aqueous ink images on the base layer prior to transfer of the images to an image receiving media substrate. At transfer, the images and at least a portion of the base layer are transferred to the image receiving media substrate, the images being sandwiched between the portion of the base layer and the image receiving media substrate.
Abstract:
A phase change ink includes a crystalline component and an amorphous component, the amorphous component including a branched alkyl core and a urea functional group.
Abstract:
A phase change ink composition is disclosed. The phase change ink composition comprises a crystalline component and an amorphous component. At a temperature ranging from about 40° C. to about 80° C., the phase change ink simultaneously exhibits (i) a static force ranging from about 2 N to about 4.5 N, and (ii) a storage modulus ranging from about 300 MPa to about 700 Mpa. The crystalline component is not a wax. A method of predicting spreading performance of a phase change ink is also disclosed.
Abstract:
A phase change ink composition comprising an amorphous component, a crystalline material, a fluorescent material and optionally, a non-fluorescent colorant, which are suitable for ink jet printing, including printing on coated paper substrates. The novel phase change ink formulation allows the ink to change color when exposed to UV light, reversibly and multiple times, providing an ink suitable for use in security applications.
Abstract:
A solid ink composition includes a crystalline component; an amorphous amide component; and a colorant. The crystalline component includes a mono-amide compound with an aromatic ring core.
Abstract:
A phase change ink comprising an amorphous compound; a crystalline compound; an optional dispersant; an optional synergist; an optional colorant; and an alcohol having a long alkyl chain containing from about 10 to about 80 carbon atoms.
Abstract:
A polymer composition includes a first polymer layer containing a base polymer matrix, and a second polymer layer grafted onto the first layer. The second polymer layer contains a stimulus-responsive polymer, and the surface free energy of the stimulus-responsive polymer is adjustable from a first surface free energy state to a second surface free energy state when heated to a critical activation temperature. A method of preparing a polymer composition includes providing a first polymer layer containing a base polymer, and grafting a second polymer layer containing a stimulus-responsive layer onto the first layer. A method of printing an image involves applying an ink onto an intermediate transfer member containing a first polymer layer containing a base polymer matrix and a second polymer layer containing a stimulus-responsive polymer grafted onto the first layer, spreading the ink, inducing a property change of the ink, and transferring the ink to a substrate.