摘要:
A clamp circuit includes both nmos and pmos devices connected in series between a voltage source terminal, such as an integrated circuit pad, and ground. A trigger unit, connected between the voltage source and ground, includes a plurality of output terminals coupled to the clamp circuit. The trigger unit is responsive to a voltage threshold, such as caused by an ESD occurrence, between the voltage source and ground to apply clamping signals at its output terminals to couple the voltage source terminal to ground through both nmos and pmos devices.
摘要:
A latch-up prevention structure and method for ultra-small high voltage tolerant cell is provided. In one embodiment, the integrated circuit includes an input and/or output pad, a floating high-voltage n-well (HVNW) connected to the input and/or output pad through a P+ in the floating HVNW and also connected to a first voltage supply, a low-voltage n-well (LVNW) connected to a second voltage supply through a N+ in the LVNW, a HVNW control circuit, and a guard-ring HVNW, where the first voltage supply has higher voltage level than the second voltage supply, guard-ring HVNW is inserted in between the floating HVNW and LVNW to prevent a latch-up path between a P+ in HVNW and N+ in LVNW by using the HVNW control circuit that controls the guard-ring HVNW's voltage level. The guard-ring HVNW's voltage level is matched by the floating HVNW's voltage level.
摘要:
A clamp circuit includes both nmos and pmos devices connected in series between a voltage source terminal, such as an integrated circuit pad, and ground. A trigger unit, connected between the voltage source and ground, includes a plurality of output terminals coupled to the clamp circuit. The trigger unit is responsive to a voltage threshold, such as caused by an ESD occurrence, between the voltage source and ground to apply clamping signals at its output terminals to couple the voltage source terminal to ground through both nmos and pmos devices.
摘要:
An electrostatic discharge (ESD) protection circuit coupled with an input/output (I/O) pad. The ESD protection circuit includes a clamp field effect transistor (FET) coupled between a first supply voltage and a second supply voltage. An inverter includes an input end and an output end. The output end of the inverter is coupled with a gate of the clamp FET. A RC time constant circuit is disposed between the first supply voltage and the second supply voltage. A current mirror includes a first transistor. The current mirror is coupled between the input end of the inverter and the second supply voltage. A circuit is coupled with the input end of the inverter. The circuit is capable of outputting a voltage state on the input end of the inverter that is capable of substantially turning off the clamp FET while the I/O pad is subjected to a latch-up test using a negative current.
摘要:
In some embodiments, an electrostatic discharge (ESD) protection circuit includes a substrate resistance control circuit coupled to a body of a first NMOS transistor. The substrate resistance control circuit increases a resistance of the body of the first NMOS transistor during an ESD event. The first NMOS transistor has a drain coupled to an input/output (I/O) pad and a gate coupled to a first voltage source. The first voltage source is set at ground potential.
摘要:
A device is presented. The device includes a first circuit coupled to first and second power rails of the device. The first circuit is subject to a latch up event in the presence of a latch up condition. The latch up event includes a low resistance path created between the first and second power rails. The device also includes a latch up sensing (LUS) circuit coupled to the first circuit. The LUS circuit is configured to receive a LUS input signal from the first circuit and generates a LUS output signal to the first circuit. When the input signal is an active latch up signal which indicates the presence of a latch up condition, the LUS circuit generates an active LUS output signal which creates a break in the low resistance path to terminate the latch up event.
摘要:
An improved nLDMOS ESD protection device having an increased holding voltage is disclosed. Embodiments include: providing in a substrate a DVNW region; providing a HVPW region in the DVNW region; providing bulk and source regions in the HVPW region; providing a drain region in the DVNW region, separate from the HVPW region; and providing a polysilicon gate over a portion of the HVPW region and the DVNW region.
摘要:
An ESD circuit is disclosed. The ESD circuit includes a pad and a ground and a sensing element coupled between the pad and ground for sensing an ESD current. The sensing element generates an active sense output signal when an ESD current is sensed and an inactive sense output signal when no ESD current is sensed. The ESD circuit also includes a bypass element comprising a bi-polar junction transistor. The bypass element is coupled in parallel to the sensing element between the pad and ground. The active sense output signal causes the bypass element to be activated to provide a current path between the pad and ground.
摘要:
An approach for providing a latch-up robust PNP-triggered SCR-based device is disclosed. Embodiments include providing a silicon control rectifier (SCR) region; providing a PNP region having a first n-well region proximate the SCR region, a first N+ region and a first P+ region in the first n-well region, and a second P+ region between the SCR region and the first n-well region; coupling the first N+ region and the first P+ region to a power rail; and coupling the second P+ region to a ground rail.