摘要:
A non aqueous electrolyte secondary battery comprises a positive electrode made from a material which is capable of occluding and discharging anions, a negative electrode made from a material which is capable of occluding and discharging cations, and a non aqueous electrolyte containing a room temperature molten salt having a melting point of not greater than 60° C.
摘要:
A lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a current collector, an active material layer on the current collector and including an amorphous silicon oxide represented by SiOx (0.95
摘要:
A non-aqueous electrolyte secondary cell is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte solution, wherein said positive electrode comprises sulfur and said non-aqueous electrolyte solution comprises a room-temperature molten salt having a melting point of 60° C. or less.
摘要:
A negative electrode for a rechargeable lithium battery which is obtained by sintering under a non-oxidizing atmosphere, in the form of a layer on a surface of a metal foil current collector, an anode mix containing a binder and particles of active material containing silicon and/or a silicon alloy; the negative electrode being characterized in that the metal foil current corrector has projections and recesses on its surface, the projection is shaped to have a recurved side face portion that curves more outwardly as it extends closer to a distal end of the projection, and the binder penetrates into spaces defined by the recurved side face portions.
摘要:
A method of manufacturing an electrode for a secondary battery by depositing a thin film composed of active material on a current collector in which a surface-treated layer such as an antirust-treated layer is formed, including the steps of: removing at least part of the surface-treated layer by etching the surface of the current collector with an ion beam or plasma in order to improve the diffusion of the current collector material into the active material thin film; and depositing the thin film on the surface of the current collector subjected to the etching step.
摘要:
In a non-aqueous electrolyte secondary cell including a positive electrode, a negative electrode and a non-aqueous electrolyte, the negative electrode includes a material capable of absorbing or releasing lithium and wherein the non-aqueous electrolyte contains a room-temperature molten salt having a melting point of 60° C. or less and a lithium salt.
摘要:
A method of manufacturing a lithium secondary cell capable of preventing an active material layer from oxidation and moisture absorption is obtained. This method of manufacturing a lithium secondary cell comprises steps of forming an active material layer on a collector by a method supplying raw material through discharge into a vapor phase and holding the collector formed with the active material layer at least under an inert atmosphere or under a vacuum atmosphere up to preparation of the cell. Thus, the collector formed with the active material layer is prevented from exposure to the atmosphere, whereby the active material layer is prevented from oxidation and moisture absorption. Consequently, a lithium secondary cell having excellent characteristics can be prepared.
摘要:
A method for fabricating an electrode for lithium secondary battery characterized by applying a tension to a metallic foil so as to pull an area of the metallic foil on which a thin film composed of active material is deposited, from the both sides in the direction of longitude, when depositing the thin film on the metallic foil serving as a current collector.
摘要:
A lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a current collector, an active material layer on the current collector and including an amorphous silicon oxide represented by SiOx (0.95
摘要:
A method of manufacturing an electrode for a secondary cell capable of readily forming an active material layer only on a necessary portion of a collector by a method supplying raw material from a gas phase is obtained. This method of manufacturing an electrode for a secondary cell comprises steps of forming a mask layer containing a material reduced in adhesion to a collector due to a high temperature for forming an active material layer on a prescribed region of the collector, forming the active material layer on the collector and on the mask layer by a method supplying raw material from a gas phase and removing the mask layer and part of the active material layer formed on the mask layer. Thus, the mask layer is readily separated from the collector after the active material layer is formed by the method supplying raw material from a gas phase. Consequently, the mask layer and part of the active material layer formed on the mask layer are so readily removed that the active material layer is readily located only on a necessary portion of the collector.